日历

2024 - 4
 123456
78910111213
14151617181920
21222324252627
282930    
«» 2024 - 4 «»

日志分类

存 档

日志文章列表

2007年12月18日 14:10:33

光通信集成式密集波分复用(DWDM)系统的优势

光通信集成式密集波分复用(DWDM)系统的优势
  秦保根  
  一、概述
  传统的光通信系统都是遵循“光-电-光”的工作原理,线路传输速率受电子电路处理信号速率的限制。通常,电子技术处理的(传输)速度以10Gbit/s为限,要提高到20Gbit/s就相当困难。因此,在光纤通信系统和光纤通信网络中,电子技术就成为其进一步发展的瓶颈。为了克服这一瓶颈,充分开发光纤通信的带宽优势,光波分复用(WDM)技术便应运而生。密集波分复用(DWDM)光传输的迅猛发展,得益于光纤承载介质技术的不断创新,光纤由过去标准单模光纤(G.652)、色散位移光纤(G.653),到非零色散位移光纤(G.655),实现了新型的全波光纤(All-waveFiber)。由于光纤制造工艺的改进,基本消除了光纤制造过程中引入的水份,常规光纤在1385nm波长附近由OH根离子造成的损耗峰消失,使传输率耗从最初的2dB/Km降到0.3dB/Km以下,在1310?1600nm波段上衰减趋于平坦,光纤可利用的波长增加100nm左右,相当于125个波长通道(100GHz通道间隔)。
  根据国际电联ITU-TG.692建议,DWDM技术是在波长1552.52nm窗口附近(对应的频率为:193.1THZ)的1530?1560nm波长范围内,选用密集的但相互又有一定波长间隔的多路光载波(掺铒光纤放大器EDFA对这些光载波能平坦增益),受不同数字信号的调制,将不同波长的光信号复用在一根光纤上传输,大大提高了光纤的传输容量。
  二、DWDM系统结构分析
  DWDM从结构上分,目前有集成系统和开放系统。集成式系统:要求接入的单光传输设备终端的光信号是满足G.692标准的光源。开放系统,是在合波器前端及分波器的后端,加波长转移单元OTU,将当前通常使用的G.957接口波长转换为G.692标准的波长光接口。这样,开放式系统采用波长转换技术?使任意满足G.957建议要求的光信号能运用光-电-光的方法,通过波长变换之后转换至满足G.692要求的规范波长光信号,再通过波分复用,从而在DWDM系统上传输。
  目前的DWDM系统可提供16/20波或32/40波的单纤传输容量,最大可到160波,具有灵活的扩展能力。用户初期可建16/20波的系统,之后根据需要再升级到32/40波,这样可以节省初期投资。其升级方案原理:一种是在C波段红带16波加蓝带16波升级为32波的方案;另一种是采用interleaver,在C波段由200GHz间隔16/32波升级为100GHz间隔20/40波。进一步的扩容求,可提供C+L波段的扩容方案,使系统传输容量进一步扩充为160波。
  国内各大运营商现在网运行的DWDM?大量使用的几乎都是开放式DWDM系统,而实际上,集成式密集波分复用系统,有其自身的众多优点:
  1、集成式DWDM系统的合波器和分波器在发端和收端是分别使用的,即:在发端只有合波器,在收端只有分波器,同时在收端和发端均去掉了OTU转换设备(此部分费用较大)?因此DWDM系统设备的投资可节省60%以上。
  2、集成式DWDM系统在收端和发端仅使用无源器件(如:合波器或分波器),电信运营单位可向器件厂家直接订货,减少供应环节,费用更低,从而节省设备成本。
  3、开放式DWDM的网管系统负责:OTM(主要是OTU)、OADM、OXC、EDFA的监测,其设备投资约占DWDM系统总投资的20%;而集成式的DWDM系统由于无需OTM设备,其网管仅负责OADM、OXC、EDFA的监测,可引入更多的厂家进行竞争,其网管费用能比开放式DWDM的网管节省一半左右。
  4、由于集成式的DWDM系统的合波波/分波设备为无源器件,便于提供多种业务、多速率的接口,只要业务端设备光端机的波长符合满足G.692的标准,即可以PDH、SDH、POS(IP)、ATM等任何业务接入,支持8M、10M、34M、100M、155M、622M、1G、2.5G、10G等各种速率的PDH、SDH、ATM及IP以太网?避免了开放式DWDM系统由于OTU的原因,而只能使用所购DWDM系统已确定光波长(1310nm、1550nm)及传输速率的SDH、ATM或IP以太网设备?而根本不可能使用其他接口。
  5、若将SDH、IP路由器等光传输设备的激光器件模块统一设计为标准几何尺寸的管脚,规范接口,便于维护插拔,且连接可靠。这样,维护人员就可根据集成式DWDM系统波长需要,自由更换特定彩色波长的激光头,为激光头的故障维护,提供了便利条件,避免了以前必须由厂家整板更换这一弊端所带来的高维护费用。
  6、彩色波长的光源目前仅比普通1310nm、1550nm波长的光源价格稍贵,如2.5G速率的彩色波长光源目前要贵3000多元,但当接入到集成式DWDM系统上使用时,能使造价系统造价降低近10倍,并且随着彩色波长光源的大量应用,其价格将接近于普通光源。
  7、集成式DWDM设备结构简单,体积更小,大约只有开放式DWDM所占空间的五分之一,节省机房资源。
  综上所述,集成式DWDM系统应大量应用于DWDM传输系统中大量中,并逐步替代开放式DWDM系统的主导地位。考虑到目前已有大量普通光源的光传输设备在网使用,建议可采用集成式与开放式兼容的混合式DWDM,已保护前期投资。
  三、DWDN系统的其他功能
  1、DWDM系统的光监控信道(OSC)
  在DWDM系统中,采用独立的1510nm波长(速率为2Mb/s)承载光监控信道(OSC),传送网管、公务和监控信息,帧结构符合G.704,实际用于监控信息传送的速率为1920kb/s。0SC光监控信道是DWDM系统工作状态的信息载体。在DWDM系统中,OSC是一个相对独立的子系统,传送光信道层、光复用段层和光传输段层的维护和管理信息,提供公务联络及使用者通路,同时它还可以提供其它附加功能。OSC主要包括的子系统功能为:OSC信道接收和发送、时钟恢复和再生、接收外部时钟信号、OSC信道故障检测和处理及性能监测、CMI编解码、OSC帧定位和组帧处理、监控信息处理。性能的监测(B1、J0、OPM、光放监测),可由业务接入终端完成。模拟量监测功能和B1误码监测功能,提供不中断业务的多路光通道性能监测(包括各信道波长、光功率、光信噪比),适时监测光传送段和光通道性能质量,提供故障定位的有效手段。具有监测放大器的输入光功率、输出光功率、PUMP驱动电流、PUMP制冷电流、PUMP温度和PUMP背向光功率的功能。具有监测多方向的波数、各信道的波长、光功率和光信噪比等性能,监测的波长精度可大于0.05nm、光功率精度可大于0.5dBm、信噪比精度可大于0.5dB。
  2、光纤放大器
  按光纤放大器所在线路传输种的位置不同,可分为三种:
  (1)放在光发射机后面的,称为功率放大器;
  (2)放在光纤线路之间起中继作用的,称为线路放大器;
  (3)放在光接收机前面的,称为前置放大器。
  按光放大实现的功能,可分为两种:
  (1)掺铒光纤放大器:具有增益平坦、增益锁定、输出功率钳制和放大器瞬态控制等功能,同时为了消除由于突发事故产生的光放大器的“浪涌”现象,光放大器还具有光功率自动关断(APSD)和功率自动减弱(APR)功能。
  (2)RPM喇曼光纤放大器:专为远距离光传输系统设计,采用高性能14XXnm泵浦激光器和无源器件,结构紧凑,能直接放大C-Band、L-Band、C+L-Band的光信号,改善线路光信噪比(OSNR),很好地提升系统的传输性能,符合TelcordiaGR-1312-CORE的标准要求。
  3、DWDM系统的OADM、OXC功能
  OADM可根据需要在任何光中继站点提供波长的光信号上下(目前可做到8波),该功能与OXC配合,可以将任何上路端口来的某一光信号都可以上到系统的任一波长,这样即使两个上路端口的上路光信号波长相同,也不会造成阻塞。同样下路也可以通过端口指配功能将某一下路波长根据需要下到任一端口,从而极大地扩展了OADM应用的灵活性。此外,通过OADM与OXC地组合应用,可以提供二纤单向复用段保护、二纤双向复用段保护、通道保护等保护方式,从而可以实现自愈环型组网,使系统性能安全、可靠。

msn:fengdou168@hotmail.com

类别: 无分类 |  评论(0) |  浏览(3753) |  收藏
2007年12月18日 14:09:12

光波分复用(WDM)技术

一、波分复用技术的概念
  波分复用(WDM)是将两种或多种不同波长的光载波信号(携带各种信息)在发送端经复用器(亦称合波器,Multiplexer)汇合在一起,并耦合到光线路的同一根光纤中进行传输的技术;在接收端,经解复用器(亦称分波器或称去复用器,Demultiplexer)将各种波长的光载波分离,然后由光接收机作进一步处理以恢复原信号。这种在同一根光纤中同时传输两个或众多不同波长光信号的技术,称为波分复用。
  通信系统的设计不同,每个波长之间的间隔宽度也有不同。按照通道间隔的不同,WDM可以细分为CWDM(稀疏波分复用)和DWDM(密集波分复用)。CWDM的信道间隔为20nm,而DWDM的信道间隔从0.2nm 到1.2nm,所以相对于DWDM,CWDM称为稀疏波分复用技术。
  CWDM和DWDM的区别主要有二点:一是CWDM载波通道间距较宽,因此,同一根光纤上只能复用5到6个左右波长的光波,“稀疏”与“密集”称谓的差别就由此而来;二是CWDM调制激光采用非冷却激光,而DWDM采用的是冷却激光。冷却激光采用温度调谐,非冷却激光采用电子调谐。由于在一个很宽的波长区段内温度分布很不均匀,因此温度调谐实现起来难度很大,成本也很高。CWDM避开了这一难点,因而大幅降低了成本,整个CWDM系统成本只有DWDM的30%。CWDM是通过利用光复用器将在不同光纤中传输的波长结合到一根光纤中传输来实现。在链路的接收端,利用解复用器将分解后的波长分别送到不同的光纤,接到不同的接收机。
二、波分复用技术的优点
  WDM技术之所以在近几年得到迅猛发展是因为它具有下述优点:
  (1) 传输容量大,可节约宝贵的光纤资源。对单波长光纤系统而言,收发一个信号需要使用一对光纤,而对于WDM系统,不管有多少个信号,整个复用系统只需要一对光纤。例如对于16个2.5Gb/s系统来说,单波长光纤系统需要32根光纤,而WDM系统仅需要2根光纤。
  (2) 对各类业务信号“透明”,可以传输不同类型的信号,如数字信号、模拟信号等,并能对其进行合成和分解。
  (3) 网络扩容时不需要敷设更多的光纤,也不需要使用高速的网络部件,只需要换端机和增加一个附加光波长就可以引入任意新业务或扩充容量,因此WDM技术是理想的扩容手段。
  (4) 组建动态可重构的光网络,在网络节点使用光分插复用器(OADM)或者使用光交叉连接设备(OXC),可以组成具有高度灵活性、高可靠性、高生存性的全光网络。
三、波分复用技术目前存在的问题
  以WDM技术为基础的具有分插复用功能和交叉连接功能的光传输网具有易于重构、良好的扩展性等巨大优势,已成为未来高速传输网的发展方向,但在真正实现之前,还必须解决下列问题。
1. 网络管理
  目前,WDM系统的网络管理,特别是具有复杂的上/下通路需求的WDM网络管理仍处于不成熟期。如果WDM系统不能进行有效的网络管理,将很难在网络中大规模采用。例如在故障管理方面,由于WDM系统可以在光通道上支持不同类型的业务信号,一旦WDM系统发生故障,操作系统应能及时发现故障,并找出故障原因。但到目前为止,相关的运行维护软件仍不成熟;在性能管理方面,WDM系统使用模拟方式复用及放大光信号,因此常用的比特误码率并不适用于衡量WDM的业务质量,必须寻找一个新的参数来准确衡量网络向用户提供的服务质量等。如果这些问题不及时解决,将阻碍WDM系统的发展。
2.互连互通
  由于WDM是一项新生的技术,其行业标准制定较粗,因此不同商家的WDM产品互通性较差,特别是在上层的网络管理方面。为了保证WDM系统在网络中大规模实施,需保证WDM系统间的互操作性以及WDM系统与传统系统间互连、互通,因此应加强光接口设备的研究。
3.光器件
  一些重要光器件的不成熟将直接限制未来光传输网的发展,如可调谐激光器等。对于一些大的运营公司来说,在网络中处理几个不同的激光器就已经非常棘手了,更不用说几十路光信号了。通常光网络中需要采用4~6个能在整个网络中进行调谐的激光器,但目前这种可调谐激光器还无法进入商用。
四、DWDM技术简介
1.DWDM对光纤性能的要求
  DWDM是密集的多波长光信道复用技术,光纤的非线性效应是影响WDM传输系统性能的主要因素。光纤的非线性效应主要与光功率密度、信道间隔和光纤的色散等因素密切相关;光功率密度越大、信道间隔越小,光纤的非线性效应就越严重;色散与各种非线性效应之间的关系比较复杂,其中四波混频随色散接近零而显著增加。随着WDM技术的不断发展,光纤中传输的信道数越来越多,信道间距越来越小,传输功率越来越大,因而光纤的非线性效应对DWDM传输系统性能的影响也越来越大。
  克服非线性效应的主要方法是改进光纤的性能,如增加光纤的有效传光面积,以减小光功率密度; 在工作波段保留一定量的色散,以减小四波混频效应;减小光纤的色散斜率,以扩大DWDM系统的工作波长范围,增加波长间隔;同时,还应尽量减小光纤的偏振模色散,以及在减小四波混频效应的基础上尽量减小光纤工作波段上的色散,以适应单信道速率的不断提高。
2.DWDM系统中的光源
  密集波分复用系统中的光源应具有以下4点要求:(1)波长范围很宽;(2)尽可能多的信道数;(3)每信道波长的光谱宽度应尽可能窄;(4)各信道波长及其间隔应高度稳定。因此,在波分复用系统中使用的激光光源,几乎都是分布反馈激光器(DFB-LD),而且目前多为量子阱DFB激光器。
  随着科学技术的发展与进步,用在波分复用系统中的光源除了分立的DFB-LD、可调谐激光器、面发射激光器外,还有两种形式。其一是激光二极管的阵列,或是阵列的激光器与电子器件的集成,实际是光电集成回路(OEIC),与分立的DFB-LD相比,这种激光器在技术上前进了一大步,它体积缩小、功耗降低、可靠性高,应用上简单、方便。另一种新的光源——超连续光源。
  超连续光源,确切地说应该是限幅光谱超连续光源(Spectrum Sliced Supercontinuum Source)。研究表明,当具有很高峰值功率的短脉冲注入光纤时,由于非线性传播会在光纤中产生超连续(SC)宽光谱,它能限幅成为许多波长,并适合于作波分复用的光源,这就是所谓的限幅光谱超连续光源。
3.实现DWDM的关键技术和设备
  实现光波分复用和传输的设备种类很多,各个功能模块都有多种实现方法,具体采用何种设备应根据现场条件和系统性能的侧重点来决定。总体上看,在DWDM系统当中有光发送/接收器、波分复用器、光放大器、光监控信道和光纤五个模块。
(1)光发送/接收器
  光发送/接收器主要产生和接收光信号。主要要求具有较高的波长精度控制技术和较为精确的输出功率控制技术。两种技术都有两种实现方法。常用控制波长的方式包括:温度控制,使激光器工作在恒定的温度条件下来达到控制精度的要求;波长反馈技术,采用波长敏感器件监控和比较激光器的输出波长,并通过激光器控制电路对输出波长进行精确控制。
(2)波分复用器
  波分复用器(OMD)包括合波器和分波器。
  光合波器用于传输系统发送端,是一种具有多个输入端口和一个输出端口的器件,它的每一个输入端口输入一个预选波长的光信号,输入的不同波长的光波由同一个输出端口输出。
  光分波器用于传输系统接收端,正好与光合波器相反,它具有一个输入端口和多个输出端口,它将多个不同波长的光信号分离开来。
  光合波器一般有耦合器型、介质膜滤波器型和集成光波导型等种类。光分波器主要有介质膜滤波器型、集成光波导型、布拉格光栅型等种类。其中,集成光波导技术使用最为广泛,它利用光平面波导构成N×M个端口传输分配器件,可以接收多个支路输入并产生多个支路输出,利用不同通道的置换,可用作合波器,也可用作分波器。具有集成化程度高的特点,但是对环境较为敏感。
(3)光放大器
  光放大器可以作为前置放大器、线路放大器、功率放大器,是光纤通信中的关键部件之一。目前使用的光放大器分为光纤放大器(OFA)和半导体光放大器(SOA)两大类,光纤放大器又有掺饵光纤放大器(EDFA)、掺镨光纤放大器(PDFA)、掺铌光纤放大器(NDFA)。其中,掺饵光纤放大器(EDFA)的性能优越,已经在波分复用实验系统、商用系统中广泛应用,成为现阶段光放大器的主流。对EDFA的基本要求是高增益且在通带内增益平坦、高输出、宽频带、低噪声、增益特性与偏振不相关等。半导体光放大器(SOA)早期受噪声、偏振相关性等因素的影响,性能不达到实用要求,后来在应变量子阱材料的SOA研制成功后,再度引起人们的关注。SOA结构简单、适于批量生产、成本低、寿命长、功耗小、还能与其它配件一块集成以及使用波长范围可望覆盖EDFA和PDFA的应用。
(4)光监控通道
  根据ITU-TG.692建议要求,DWDM系统要利用EDFA工作频带以外的一个波长对EDFA进行监控和管理。目前在这个技术上的差异主要体现在光监控通道(OSC)波长选择、监控信号速率、监控信号格式等方面。
4.DWDM应用
  DWDM既可用于陆地与海底干线,也可用于市内通信网,还可用于全光通信网。
  市内通信网与长途干线的根本不同点在于各交换局之间的距离不会很长,一般在10km上下,很少超过15km的,这就不用装设线路光放大器,只要DWDM系统终端设备成本足够低就将是合算的。已有人试验过一种叫做MetroWDM都市波分多路系统的方案,表明将WDM用于市内网的局间干线可以比由TDM提升等级的办法节省约30%的费用。同时WDM系统还具有多路复用保护功能,对运行安全有利。交换局到大楼FTTB或到路边FTTC这一段接入网也可用DWDM系统,或可节省费用或可更好地保护用户通信安全。
  利用DWDM系统传输的不同波长可以提供选寻路由和交换功能。在通信网的结点处装上波长的光的插分复接器WADM OADM,就可以在结点处任意取下或加上几个波长信号,对业务增减十分方便。每一结点的交叉连接也会是波长的或光的交叉连接WXC?OXC。如果再配以光波长变换器OTU或光波长发生器,以使在波长交叉连接时可改用其他波长则更加灵活适应需要了。这样整个通信网包括交换在内就可完全在光域中完成,通信网也就成了“全光通信网AON?”,即多波长光通信网MONET。无疑,DWDM在构建AON中起了关键作用。
五、CWDM技术简介

1.CWDM标准制定情况

  美国的1400nm商业利益组织正在致力于为CWDM系统制定标准。目前建议草案考虑的CWDM系统波长栅格分为三个波段。“O波段”包括四个波长: 1290、1310、1330和1350nm,“E波段”包括四个波长: 1380、1400、1420 和1440nm,“S+C+L”波段包括从1470nm到1610nm的范围,间距为20nm的八个波长。这些波长利用了光纤的全部光谱,包括在1310、1510和1550nm处的传统光源,从而增加了复用的信道数

  20nm的信道间距允许利用廉价的不带冷却器的激光发射机和宽带光滤波器,同时,它也躲开了1270nm高损耗波长,并且使相邻波段之间保持了30nm的间隙。

  尽管目前还没有CWDM的技术标准,在市场上已经存在一个事实上的城域网标准:IEEE已经制定了万兆以太网10GbE标准。CWDM的标准将据此来制定。

  CWDM的复用/解复用器和激光器正在逐渐形成自己的标准。相邻波长间隔根据无冷却的激光器在很宽的温度范围内工作产生的波长漂移来决定。目前被确定为20nm,其中心波长为:1491,1511,1531等一直到1611nm。而在1300nm波段,IEEE以太网定义通道宽度为20nm,但是中心波长为1290,1310,1330和1359nm。在1400nm波段如何定义还不知道。目前已经成立CWDM用户组开始结束CWDM城域网标准的混乱状态。

  虽然 CWDM目前尚没有形成统一的技术标准,不过,CWDM用户组已经成立,估计不远的将来,这种混乱的局面将结束。目前已经有设备生产厂商着手开发 CWDM的传输设备,并已经有设备投入商用化,能够支持从100Mbit/s-2.5Gbit/s的传输速率。

2.CWDM系统的关键技术与模块

  (1)新型光纤技术

  光纤具有丰富的频带资源和优异的传输性能,是通信网络理想的传输媒质。影响光信号传输距离的光纤参数主要有衰减、色散和非线性。城域网覆盖范围通常在50~80km左右,一般不需要光放大器和中继设备,光纤色散和非线性并非关键问题。

  CWDM对传输媒质没有特殊要求,各种单模光纤和多模光纤都可以采用CWDM技术。城域内目前大量使用G.652光纤。这种光纤因残留有氢氧根离子,导致1383nm波长附近出现明显的吸收峰。E波段吸收峰引起传输损耗的典型值约为1dB/km,极大影响了WDM系统的传输距离和可用波长范围。目前商用的4波、8波和16波CWDM系统通常选取1290~1610nm的波长范围,如O波段:1290nm、1310nm、1330nm、1350nm;E波段:1380nm、1400nm、1420nm、1440nm;以及S + C+L波段8个波长:1470~1610nm。

  为了扩展光纤的可用波长范围,提高复用信道数量,许多公司纷纷推出各种新型的G.652C光纤。其中零水峰光纤(ZWPF)有效消除氢氧根吸收峰的影响,提供更低的相邻信道信号衰减。对ZWPF来说,损耗值以1/λ4的速度(由于瑞利散射效应减弱以及OH吸收峰的消除)逐渐减小,在1550nm附近得到最小值。这种光纤的色散系数与传统单模光纤相同,大体分布在13~19ps/nm·km。ZWPF光纤提供的有效波长范围比传统单模光纤多出100nm,使CWDM信道数量增益高达33%以上。同时,G.652C光纤完全与传统单模光纤兼容,支持所有标准的系统规范。

  目前,ZWPF光纤越来越受到业界的关注。MRV公司和LUNX公司推出的16波CWDM系统就采用了OFS的AllWave光纤产品,传输距离可达70km。Transmode公司宣称已经实现2.5Gbit/s速率的全波CWDM传输系统,无中继放大情况下传输距离超过80km。

  (2)光收发模块

  光收发模块是光通信系统的主要部件。目前常见的光收发模块有分立的光发射模块、光接收模块和光收发一体模块三种。它们的发展趋势是小型化、低成本、低功耗、远距离、高速率和热插拔。

  CWDM收发模块通常采用DFB激光器或垂直腔表面发射激光器(VCSEL)作为光源。CWDM系统使用的DFB激光器无需集成致冷器,温度漂移系数约为0.08nm/℃。这种激光器在0到70℃温度范围内的波长热漂移约6nm左右,加上制造过程的波长容差±(2~3)nm,整体波长变化范围在12nm以内。因此,CWDM信道间隔和通道宽度足够适应无致冷DFB激光器的波长变化,激光器的工作温度范围也相对较宽。而DWDM系统采用的DFB激光器温度漂移系数为Δλ/10(nm/℃),波长容差的典型值为±0.1nm。除温度外,CWDM无致冷激光器还需要考虑的问题就是色散代价。激光器芯片的优化设计能够延长色散受限系统的传输距离。

  VCSEL是一种新型的半导体激光器。与常规边缘发射激光器的结构不同,VCSEL激光器的出光窗口在芯片表面,发光束方向与芯片表面垂直,无需解调就可以进行在线测试和封装,有利于实现低成本、大规模的工业化生产。VCSEL激光器具有的低功耗和高效的光纤耦合特性,能够便利地制成二维阵列,实现大规模光电集成。目前应用最为广泛的商用VCSEL激光器及收发模块通常都是850nm发射波长的多模芯片,其原因是受成本、输出功率和技术成熟度等因素的限制。近年来,VCSEL激光器相关技术发展迅速。随着现代高速光纤网络的发展,VCSEL有望取代DFB激光器,成为光通信领域最理想、最有前途的低成本光源。
  CWDM系统使用的接收模块与DWDM系统基本相同,主要采用PIN型或APD型探测器及其组件。CWDM接收模块要求带宽覆盖的范围较宽,以便捕获所有特定的比特速率和传输协议。PIN型接收模块成本较低,设计相对简单,而APD型接收模块的灵敏度至少提高9~10dB增益。

  (3)复用器/解复用器(MUX/DEMUX)

  复用器/解复用器是波分复用光传输系统的关键器件。MUX/DEMUX的重要性能指标包括中心波长、插入损耗、信道隔离度和通带宽度等。目前常用的MUX/DEMUX有干涉膜滤波器型、光纤光栅型和阵列波导光栅AWG型和熔融拉锥耦合型等。

  其中,干涉膜滤波技术近年来发展较为成熟,这种器件具有信道灵活、隔离度较高、插入损耗较低和热稳定性好等优点,适合信道数量不多的波分复用系统。目前商用的CWDM复用器/解复用器主要也是采用干涉膜滤波技术来设计。CWDM复用器/解复用器对薄膜滤波技术要求相对较低,导致生产时间缩短、效率提高以及原材料需求降低。基于干涉膜滤波技术的DWDM复用器/解复用器造价通常是CWDM同类产品的两倍左右。DWDM系统使用的0.8nm滤波器一般大约需要150层介质薄膜,而CWDM系统的20nm滤波器大约有50层。

  此外,熔融拉锥耦合技术在CWDM产品中也有应用。熔融拉锥耦合技术的工作原理是将两根(或两根以上)去除涂覆层的光纤以一定的方式靠拢排放,在高温下熔融并同时向两侧拉伸,最终在加热区形成双锥体形的特殊波导结构实现传输功率的耦合。由于耦合系数与波长有关,因此主要用来制作信道间隔较宽的波分复用器件。相对薄膜滤波型模块来说,熔融拉锥耦合型CWDM模块成本要低得多。

3.CWDM的优势

  从纯技术角度来讲,CWDM技术存在着明显的劣势。CWDM系统单纤总传输容量与DWDM系统相差甚远。然而,市场并非只受技术驱动,成本同样也是相当重要的考虑因素。成本效益与信道间隔密切相关。CWDM产品具有低成本、低功耗和小尺寸等优势,能有效降低系统的建设和运营成本。

  (1)CWDM的硬件成本低

  DWDM的收发设备要比CWDM系统的同类产品贵四、五倍,这与激光器的许多因素相关。DWDM系统采用DFB激光器作为光源,温度漂移系数为Δλ/10(nm/℃),它需要采用冷却技术来稳定波长,以防止由于温度变化波长漂移到复用器和解复用器的滤波器通带之外,DWDM激光器的波长容差的典型值为±0.1nm。CWDM系统采用的DFB激光器不需要冷却,温度漂移系数为0.08nm/℃,CWDM激光器的波长容差高达±2~3nm。另外,激光片的成品率低也增加了DWDM激光器的造价。

  在复用器和解复用器方面,DWDM和CWDM的造价差别主要是由于CWDM的滤波器包含的层数少,故CWDM滤波器的成本比DWDM滤波器的成本低。CWDM滤波器的成本比DWDM滤波器的成本要少50%。在CWDM系统中,相邻波长通道的间隔放宽到20nm,这就有可能将各个部件的容错范围放大,因此可以使用廉价的复用器、解复用器等,以降低CWDM系统的成本。

  由于器件成本和系统要求的降低,使得CWDM系统的造价比DWDM系统有大幅下降。

  (2)CWDM结构简单

  CWDM系统不包含OLA,即光放大中继机。另外,由于CWDM信道间隔比较大,所以相对于DWDM而言,不需要考虑功率均衡。
  (3)CWDM的功耗低

  光传输系统的运营成本取决于系统的维护和系统消耗的功率。即使DWDM和CWDM系统的维护成本都可以接受,DWDM系统的功耗要比CWDM系统的功耗高得多。在DWDM系统中,随着复用的波长总数的增加以及单信道传输速率的增加,功率损耗及其温度管理变成了电路板设计的关键问题。CWDM系统中采用不带冷却器的激光器,系统功耗低,有利于系统运营商节约开支。

  (4)CWDM器件的物理尺寸更小

  CWDM激光器要比DWDM激光器小得多,不带冷却器的激光器一般是由激光片和密封在带有玻璃窗口的金属容器中的监控光电二极管构成的。DWDM激光发射机的尺寸大约是CWDM激光发射机体积的五倍,也就是说,如果DWDM激光发射机的体积为100cm3,那么没有冷却器的CWDM激光器体积仅仅为20cm3。

  (5)CWDM对传输介质要求较低

  DWDM在运行10G以上业务的时候,需要采用G.655光纤,而CWDM对光纤没有特殊要求,G.652、G.653、G.655光纤均可采用CWDM技术,因此可以大量利用以前敷设的旧光缆。

  (6)应用环境的比较

  目前适合城域网的DWDM大多继承长途骨干网的特点,大多是端到端的逻辑连接,拓扑结构不灵活,不支持网状结构,不适应城域网内复杂机动的多逻辑拓扑。长途骨干网DWDM设备的成本远低于铺设新光纤及增加光放的成本,所以经济。但在城域网范围内,网络成本主要来源于接入端设备的成本而不是传输线路成本,所以DWDM在价格方面不具备很大的优势。而CWDM通过降低对波长的窗口要求而实现全波长范围内(1260~1620nm)的波分复用,并大大降低光器件的成本,可实现在0~80km内较高的性能价格比。

4.CWDM存在的不足

  CWDM是成本与性能折衷的产物,不可避免地存在一些性能上的局限。业内专家指出,CWDM目前尚存在以下不足:

  (1)CWDM在单根光纤上支持的复用波长个数较少,导致日后扩容成本较高。

  (2)复用器、复用解调器等设备的成本还应进一步降低,这些设备不能只是DMDM相应设备的简单改型。

  (3)CWDM还未形成国际标准。

5.CWDM系统的应用

  新型城域网建设引进CWDM系统将带来许多优势。首先,CWDM技术具有传统TDM技术无法比拟的灵活性,更适应高速数据业务的发展。CWDM系统可以为路由器及交换机提供光纤直连接口,将数据分组直接映射至波长信道而无需TDM复用器的处理,从而降低层间协议适配的复杂度。其次,CWDM系统能够节省光纤资源,并根据网络业务的具体发展情况实现平滑升级。再次,CWDM系统对各种协议和速率透明,允许运营商以波长为基础提供不同的业务。CWDM系统允许单根光纤提供不同速率的数据通道,同时兼容已经广泛应用的传统1310nm波长SDH系统。另外,CWDM系统还提供光网络层的业务保护恢复能力。

  CWDM技术还能应用于无源光网络PON系统。随着未来带宽需求的增加,APON和EPON沿用的TDM方式将无法满足业务需求,PON接入系统最终将演进至WDM-PON。现有PON系统结合采用TDM与CWDM技术是比较现实的演进策略。CWDM PON系统可以为视频信号、数据和语音信号分配不同的波长,完成信号的单纤双向传输。

  CWDM用很低的成本提供了很高的接入带宽,适用于点对点、以太网、SONET环等各种流行的网络结构,特别适合短距离、高带宽、接入点密集的通信应用场合,如大楼内或大楼之间的网络通信。

  CWDM系统以其低成本、大容量、易开通、应用灵活、业务透明性和易扩展性成为一种经济实用的短距离WDM传输系统。目前,CWDM在城域网应用中越来越受到大家的认可并已经实用化。CWDM作为一种新兴的传输网,为城域接入网与核心网的连接提供了全新的解决方案。利用稀疏分复用技术在城域网现有的网络基础上提高通信容量(波长带宽×N)、扩展带宽,能够有效解决光纤的资源问题。因此,目前在行业范围内CWDM得到了广泛认可。CWDM可应用于大都市的城域接入网,同时还可以应用于中小城市的城域核心网,且后者在我国的实际应用中应该非常有前途。当其应用于中小城市的城域核心网时,组网方式大多采用环形网且均采用双纤双向环。而稀疏分复用(CWDM) 技术在系统成本、性能及可维护性等方面具有优势,正逐渐成为今后日益增长的城域网市场的主流技术。
六、波分复用技术在无源光网络中的应用

  光纤接入网可分为无源接入和有源接入两种,中无源光网络(PON)是一种极具吸引力的接入方式,其主要特点是:低成本——显著减少光纤、光收发模块、中心局终端的数量,初期投资可被多个终端用户分摊;整个光传输通道为光纤和无源光器件,可有效避免电磁干扰和雷电影响,提高了系统的 可靠性;ODN单元可挂在路边,无需远程供电和机房,降低了运行维护成本;对业务透明,便于系统升级、管理和引入新业务;带宽大、传输距离长(可达到20km) 。基于无源光网络(PON)技术的接入方案将成为宽带光接入的首选技术。

  无源光网络接入业务的传输有以ATM为传输平台的APON和以以太网技术为传输平台的EPON以及以通用帧结构为传输平台的GPON三种类型。EPON是将以太网(Ethernet ,最具有发展潜力的链路层协议)与无源光网络(PON,接入网的最佳物理层协议)结合在一起形成地能很好适应IP数据业务的接入方式。

  在EPON系统中,上行接入技术既是关键也是难点,是EPON技术的核心。EPON系统点到多点的特殊共享结构使其不能继续采用传统以太网的 CSMA/CD的媒体接入控制(MAC) 方式进行上行接入。目前通行的上行技术有时分多址(TDMA)、码分多址(CDMA)、波分多址(WDMA)三种方案。

  时分多址技术允许各ONU共享同一波长的传输容量,每个ONU只在允许的时间间隙才能发送数据,因此ONU的发送是突发的。OLT的接收也是突发的;虽然从技术和成本上看,时分多址技术优势明显,是目前EPON上行接入较为合理的方案,但是由于存在许多关键技术难题亟待解决,比如快速比特同步、动态带宽分配、基线漂移、ONU的测距与延时补偿、突发模式光收发模块的设计等。

  码分多址技术对用户数量没有限制,而且保密性好。但随着用户数量的增加会加大信道间干扰,而且线路上的信号速率要比实际业务速率高得多,物理器件的复杂性高,传输效率较低。

  基于波分复用技术的波分多址技术采用波长作为用户端ONU的标识,利用波分复用技术实现上行接入,能够提供较宽的工作带宽,能够充分利用光纤的巨大传输带宽,可以实现真正意义上的对称宽带接入。同时还可以避免时分多址技术中ONU的测距、快速比特同步等诸多技术难点,并且在网络管理以及系统升级性能方面都有着明显的优势。随着技术的进步,波分复用光器件的成本,尤其是无源光器件成本已经大幅度下降,这使得波分多址技术成为EPON上行接入技术的重要发展方向之一。

七、WDM技术城域网建设中的应用

  传统电信城域网不能适应数据业务的突发特性,承载多业务的带宽效率较低。因此,城域网的发展目标是建立面向宽带数据和多媒体应用的IP优化网络。各种新的城域网技术(如多业务传送平台MSTP、弹性分组环RPR、城域WDM等)应运而生,其中以IP和WDM技术共同构建新型宽带城域网是有竞争力的解决方案。

  在城域网中用何种技术传输IP,取决于城域网所采用的传输技术。在城域网中的IP传输技术有IP over ATM、IP over SDH、 IP over WDM三种形式。

1. IP over ATM

  ATM是一种高速率、低时延的多路复用交换技术。它是在分析、总结电路交换和分组交换的技术优缺点的基础上发展起来的,它融合了两者的优点,即面向连接、保证服务质量和统计复用以实现高带宽。它采用固定长度的短分组在网络中传送各种通信信息,便于硬件的高速处理,实现高速、大容量的宽带交换。而且,具有相当完善的流量控制功能和拥塞控制功能,保证带宽利用率,保证网络的安全性和可靠性。

  IP over ATM是IP与ATM的结合,当前有两种技术方式:即重叠技术和集成技术。重叠技术是将IP网络层协议重叠在ATM之上,即ATM网与现有的IP网重叠,在ATM端点同时使用ATM和IP两种地址的映射功能,发送端在得到接收端ATM地址后,便可建立ATM/SVC连接,传送LAN数据包。集成技术是将IP路由器的智能和管理性能集成到ATM交换机形成一体化平台,仅要求标识IP地址,无须ATM的地址解析协议,简化了ATM的路由选择功能,提高了IP转发效率,同时保留了路由的灵活性。

  IP over ATM技术的优点是可充分利用ATM的快速交换和完善的QoS功能,保证网络的服务质量;网络具有很好的扩展性和灵活性;支持多种业务、数据、语音、视频汇集到一个网络上,为不同业务类型提供不同的服务质量QoS;有很好的网络流量管理和控制性能,表现在ATM流量控制方面非常精细,这一点对带宽是非常宝贵的、线路费用非常高的广域网来说就显得非常重要,这是目前ATM能在广域网中被广泛采用的原因之一。

  IP over ATM技术的缺点:由于IP数据包必须映射成ATM信元,由此形成的传输开销称为“信元税”,故传输效率低;网络管理比较复杂,设备昂贵;不太适用于超大型IP骨干网。
2. IP over SDH

  ATM能支持多种业务曾经是它独一无二的特点,但随着IP技术的发展和网络硬件的不断完善,今天的IP已成为各种业务的核心,数据语音和视频业务都可由IP承载,ATM的优点已由IP技术取代,特别是当数据业务量超过语音和视频时,更显得ATM没有存在的必要,况且去掉ATM还可以提高传输效率。因此,IP over SDH应运而生,这一技术也极大地动摇了ATM在广域网中的地位。

  SDH传送网的概念最初于1985年由美国贝尔通信研究所提出,称之为同步光网络(Synchronous Optical NETwork,SONET)。它是由一整套分等级的标准传送结构组成的,适用于各种经适配处理的净负荷(即网络节点接口比特流中可用于电信业务的部分)在物理媒质,如光纤、微波、卫星等上进行传送。该标准于1986年成为美国数字体系的新标准。国际电信联盟标准部(ITU—T)的前身国际电报电话资询委员会(CCITT)于1988年接受SONET概念,并与美国标准协会(ANSI)达成协议,将SONET修改后重新命名为同步数字系列(Synchronous Digital Hierarchy,SDH),使之成为同时适应于光纤、微波、卫星传送的通用技术体制。

  SDH传输网是由一些SDH网络单元组成的,在光纤、微波或卫星上进行同步信息传送,融复接、传输、交换功能于一体,由统一网络管理操作的综合信息网。可实现网络有效管理、动态网络维护、对业务性能监视等功能,能有效地提高网络资源的利用率。

  IP over SDH以SDH网络作为IP数据网络的物理传输网络。它使用链路及点到点协议(PPP:Point To Point Protocol)对数据包进行封装,根据RFC1662规范把IP分组简单地插入到PPP帧中的信息段。然后再由SDH通道层的业务适配器把封装后的IP数据包映射到SDH同步净荷中,然后经过SDH传输层和段层,加上相应的开销,把净荷装入一个SDH帧中,最后达到光网络,在光纤中传输。IP over SDH,也称为PACKET over SDH (PoS),它保留了IP面向无连接的特征。

  IP over SDH的优点是:对IP路由的支持能力强,具有很高的IP传输效率;符合Internet业务的特点,如有利于实施多播方式;能利用SDH技术本身的环路和网络自愈合能力达到链路纠错的目的;同时又利用OSPF协议防止链路故障造成网络停顿,提高网络的稳定性;将IP网络技术建立在SDH传输平台上,可以很容易地跨越地区和国界,兼容不同技术标准实施全球联网;声略了ATM层,简化了网络结构,降低了运行成本。在有线电视网络平台上IP over SDH适用于省际网络和省内网络上的IP传输。

  IP over SDH的缺点是:IP over SDH目前尚不支持虚拟专用网VPN和电路仿真;在所有包交换技术中,ATM的QoS是最好的,它可以做到电路仿真,而IP over SDH技术只能进行业务分级,不能提供较好的QoS;对大规模的网络必须处理庞大、复杂的路由表,而且查找困难,路由信息占用比较大的带宽。

  从光通信技术发展趋势看,SDH/SONET未来将让位于波分复用技术,因此,IP over SDH将最终发展成为IP over WDM
3. IP over WDM

  随着传输技术的发展,以IP业务为主对网络的进一步优化设计将是IP over WDM。

  IP over WDM技术是将WDM技术和成熟的IP传输技术结合的产物。IP over WDM就是让IP数据包直接在光路上跑,减少网络层之间的冗余部分。由于省去了中间的ATM和SDH层,其传输效率最高,节省了网络运行成本,同时也降低了用户的费用,是一种最直接、最经济的IP网络结构体系,非常适用于城域网建设。

  从协议的角度来讲,可以将这种结构的网络分成IP业务层和光网络层。IP业务层包括IP主干业务子层和IP适配子层,光网络层包括:光网络适配子层、光复用子层和光传输子层。在IP业务层当中,核心部分是IP主干业务子层,这一层完成大部分IPv4或者IPv6的功能,包括数据打包、生成报头、IP路由等。而IP适配子层则进行IP数据包的差错检测、服务质量(QoS)控制等。在光网络层当中,核心部分是光复用子层,它将实现光复用协议所规定的功能,对固定的带宽进行复用,同时还提供线路保护和故障定位等功能,WDM的特性在这个子层得到充分体现。在这个子层上面,是光网络适配子层,这个子层和IP适配子层协调工作,完成数据格式的转换,同时进行带宽管理和连接确认等功能。在光复用子层的下面是主要提供物理传输的光传输子层,在这个子层里面实现在光纤上的数据传输,还限定了光接口特性。

  IP over WDM具有以下优点:充分利用光纤的带宽资源,极大地提高了带宽和相对传输效率;对传输码率、数据格式及调制方式透明,可以传送不同码率的ATM、SDH/SONET和千兆以太网格式的业务;不仅可以和现有通信网络兼容,而且还可以支持未来的宽带业务网及网络升级,并且有可推广性和高度生存性等特点。

  IP over WDM的缺点是还没有实现波长的标准化,WDM系统的网络管理应与其传输的信号和网管分离;WDM系统的网络管理还不成熟;目前WDM系统的网络拓扑结构只是基于点对点的方式,还没有形成“光网络”。

  IP的三种传输方案各有优缺点,在实际应用中需要根据具体情况分别对待,若主干网原已采用了ATM设备,则可以采用IP over ATM方案,由于ATM端口速率高,有完善的QoS(服务质量)保证,产品成熟,因而可提高IP网交换速率,保证IP网的服务质量;若主干尚未涉及ATM,则采用IP over SDH方案,由于去掉了ATM设备,投资少,见效快而且线路利用率高。因而就目前而言,IP over SDH是较好的选择。而在城域主干网中,IP over SDH技术相对而言投入较高,采用IP over WDM技术会更实用。IP over WDM的优势是减少网络各层之间的中间冗余部分,减少SDH、ATM、IP等各层之间的功能重叠,减少设备操作、维护和管理费用。并且IP over WDM技术能够极大地拓展现有的网络带宽,最大限度地提高线路利用率,在外围网络千兆以太网成为主流的情况下,这种技术能真正地实现无缝接入,这预示着IP over WDM代表宽带IP城域网的未来。

msn:fengdou168@hotmail.com

类别: 无分类 |  评论(1) |  浏览(47705) |  收藏
2007年12月18日 14:07:32

应用前景广阔的平面光波导技术

  平面光波导或平面光路(PLC)技术使光子能在晶圆中传输,很大程度上与光子在光纤中的传输相类似。目前这种技术已被用于WDM系统中,主要是阵列波导光栅(AWG)复用/解复用模块。 然而,支持者们一直认为PLC有更广阔的应用前景,特别是在晶圆上集成多种功能和大规模量产低成本器件方面。 PLC用于光纤到楼     在光通信工业仍处于困境之时,器件制造商们认为刚刚萌芽的FTTP市场会带来光器件的大规模应用,这可以帮助他们恢复增长。这个观点在许多PLC技术的支持者中非常流行,他们认为潜在的大规模应用是一个强劲动力,这类似半导体工业。     “一旦掌握了PLC的结构和工艺,就可以大规模、低成本地制造非常复杂的器件。”NeoPhotonics市场营销副总裁FerrisLipscomb认为:“目前在亚洲,FTTH(光纤到户)的发展相当迅速。比如在日本,每月约有4万个左右的光功率分配器用于FTTH。它们都是用PLC制造的,这是很自然的。”     3月,NeoPhotonics发布了FTTP系列产品,包括光功率分配器、光耦合器、三波器件和WDM器件。Lipscomb说为了缩小器件的体积,光功率分配器使用了PLC。对1×2和2×2的功率分配器,熔融拉锥技术成本较低并具有足够的性能。但当更复杂的FTTH结构要求级联功率分配器时,与PLC器件相比,熔融拉锥器件将降低性能、增加成本并增加器件封装体积。Lipscomb认为:“通常就1×8、1×16、1×32结构而言,PLC技术在价格和性能方面都更有优势。显然,性能要求越高时,PLC技术的优越性越明显。日本使用了大量1×4光功率分配器,它们都采用PLC技术。”     平面光波导已普遍用于FTTP中的光功率分配器。因为亚洲是最有竞争力的FTTP市场,该地区的元器件供应商对PLC的应用很感兴趣。 JDSU波导业务部总经理Jy Bhardwaj也同意PLC在FTTP系统中扮演着重要角色。在他看来,价格将是决定性的因素。“我们认为PLC技术在将来有很大的潜力,因为价格会是FTTX领域追求的更为重要的目标。”然而,他相信目前PLC器件在FTTP领域的应用现状正是技术开发现状的真实市场反映。“这个市场对这种技术有很强烈的兴趣是因为短期有内盈利的可能。”     Gemfire总裁和首席执行官Richard Tompane也持上述观点,他还提醒说当大量的竞争者涌入市场后,机会将变得有限。他认为PLC功率分配器的价格已急剧下降,同时竞争者数量的增加也导致单个厂商产量的下降。   “最关键的问题在于大部分FTTP项目是在亚洲进行的,亚洲的器件厂商在市场上就有天然的优势。对于其它厂商来说,如果在那没有国内经营部门,想进入那个市场是很难的。”他补充说,“因此,Hitachi Cable和NEL也正在向那里运送大量部件。”     有两个亚洲公司正在准备进入FTTP用PLC器件市场,这正好印证了Tompane的观点。东京的Central Glass公司采用氟化聚合物PLC技术已经开发出了CWS-08E 1×8功率分配器样品。他们还开发了双向三波器件和双波器件(还包括光滤波器和其它器件)。该公司精细化工事业部总经理Tatsuya Mori说,这种聚合物材料比传统材料更能减小器件的体积,提高器件的性能。公司希望今年年底能投产这种FTTP器件。

msn:fengdou168@hotmail.com

类别: 无分类 |  评论(0) |  浏览(8950) |  收藏
2007年12月18日 14:05:07

FTTX光网络技术及其应用


引言
  面对传统语音业务营收的不断下降,提供宽带业务正迅速变成每个运营商商业模式的一个基石,光纤接入是任何成功的宽带策略所必须的。近来,固网运营商均积极转向提供整合语音、数据、视频的Triple-play业务,以期能提高APRU值,而现有宽带接入网升级将成为当务之急。各大运营商都纷纷投入光纤的部署。在刚刚结束的2006美国OFC/NFOEC大展上,FTTX的发展和部署成为与会专家讨论的焦点,就连光纤到户(FTTH)发展比较迟缓的欧洲在“FTTH欧洲论坛年会”上也提出了“很明显,光纤时代已经到来”的口号。
  虽然,市场需求、价格和政府的政策是影响FTTX发展的主要因素,但选择正确的技术、FTTX结构和商业模式是运营商进行大规模部署FTTX时首要考虑的问题。
  1、光接入技术
  1.1点到点有源以太网系统
  FTTH网络中的点到点接入技术是将电信号转换成光信号进行长距离的传输,上下行带宽都可以达到100Mbit/s甚至1000Mbit/s.采用点到点方式实现FTTH具有产品成熟、结构/技术简单、安全性较好的特点,在日本和美国已广泛应用。其主要优点如下:
  a)带宽有保证,每用户可以在配线段和引入线段独享100Mbit/s乃至1Gbit/s带宽;
  b)集中在小区机房配线,易于放号、维护和管理;
  c)设备端口利用率高,可以根据接入用户数的增加而逐步扩容,因而在低密度用户分布地区成本较低;
  d)由于用户可独立享有一根光纤,因此信息安全性较好;
  f)传输距离长,服务区域大。
  但这种技术最大的缺点是需要铺设大量的光纤和光收发器,在大规模应用情况下网络铺设困难,设备成本也很难再下降,甚至会上升。另外,有源以太网并没有一个统一的标准,从而产生多种不兼容的解决方案。还有一个可能影响选择以太网技术的因素是传统视频业务的提供方式,因此被认为是实现FTTH的过渡技术。
  1.2点到多点无源光网络系统
  1.2.1APON和BPON
  APON是20世纪90年代中期由FSAN开发完成的,并提交给ITU-T形成了G.983.x标准系列。其下行速率为622Mbit/s,上行速率为155Mbit/s,由于采用了ATM技术,因此可承载64kbit/s语音业务、ATM业务和IP业务等各种类型业务,并可提供强有力的QoS保证。
  BPON是在APON上发展起来的,最早在日本兴起的标准。1998年NTT就和南方贝尔共同制定了第一个BPON标准,并开始了BPON的商业运营。美国的运营商也因为历史的原因,倾向于使用BPON标准来构建FTTH网络。但APON/BPON的业务适配提供很复杂,业务提供能力有限,数据传送速率和效率不高,成本较高,其市场前景由于ATM的衰落而黯淡。
  1.2.2EPON
  EPON由EFM工作组提出并在IEEE802.3ah标准中进行规范,它在PON层上以Ethernet为载体,上行以突发的Ethernet包方式发送数据流。EPON可提供上下行对称1.25Gbit/s传输速率,下行10Gbit/s的传输速率正在研究中。
  在多种基于PON的技术中,EPON由于其技术和价格方面的优势已逐渐成为最受欢迎的FTTH技术。由于采用Ethernet封装方式,因此非常适于承载IP业务,符合IP网络迅猛发展的趋势,这也是EPON技术能够获得业界青睐的重要原因。但Ethernet封装方式也给EPON技术带来了一个致命的缺点——难以承载语音或电路方式数据等TDM业务,虽然目前国内外均对TDMoverEthernet技术进行了积极的研究并取得了一定的成果,但并不十分成熟,要完全达到TDM业务要求的严格QoS更是面临相当大的困难,这给EPON的应用带来了很多限制。
  从结构上看,EPON的最大优点是极大地简化了传统的多层重叠网结构,主要优点如下:
  a)消除了ATM和SDH层,从而降低了初始成本和运行成本;
  b)下行业务速率可达1Gbit/s,允许支持更多用户和更高带宽;
  c)硬件简单,无须室外电子设备,使安装部署工作得以简化;
  d)可以大量采用以太网技术成熟的芯片,实现较简单,成本低;
  e)改进了电路的灵活指配、业务的提供和重配置能力;
  f)提供了多层安全机制,诸如VLAN、闭合用户群和支持VPN等。
  EPON的主要缺点如下:
  a)由于IEEE802.3ah只规定了MAC层和物理层,MAC层以上的标准靠制造商自行开发,因而带来灵活性的同时也造成了设备互操作性差;
  b)EPON的总效率较低;
  c)没有基于标准的运营维护信道进行监测、诊断和配置OLT:
  d)EPON的设计没有考虑直接支持以太网以外的业务,多业务支持能力较差
 1.2.3GPON
  2003年ITU-T通过2个有关GPON的新标准——G.984.1和G.984.2.GPON是BPON的继承和发展。按照这一最新标准的规定,GPON可以提供1.244、2.488Gbit/s的下行速率和ITU规定的155、622Mbit/s以及1.255Gbit/s等多种标准上行速率,即可以灵活地提供对称和非对称速率。
  GPON的主要优点如下:
  a)相对其他PON技术,GPON在速率、速率灵活性、传输距离和分路比方面有优势。传输距离至少达20km,分路比最大为1:64;
  b)适应任何用户信号格式和任何传输网络制式,无需附加ATM或IP封装层,封装效率高、提供业务灵活;
  c)可以直接高质量、灵活地支持实时的TDM语音业务,延时和抖动性能很好;
  d)在运营维护和网管方面,比EPON有更大改进。
  GPON的主要缺点是技术成熟度不如EPON,难度较高,使设备成本较高。
  总的来看,GPON和EPON面临的共同挑战有以下几点:
  a)怎样才能在Ethernet/GFP上有效承载TDM业务并能提供电信级的服务质量;
  b)由于GPON和EPON是点对多点的星形或树形网络,需要通过一个1+1并经过不同路由的光网络来实现电信级的保护恢复,网络成本将非常高;
  c)目前GPON和EPON设备成本主要受限于突发光发送/接收模块以及核心的控制模块/芯片,这些模块要么尚未成熟,要么是价格昂贵还难以适应市场需要;
  d)GPON和EPON的一次性投入成本较高,不太适合逐步投资扩容的传统电信建设模式,最适合完全新建或改建的密集用户区域。
  2、FTTX在各国的部署
  根据光纤到用户的距离来分类,FTTX可分成光纤到交换箱(FTTC)、光纤到节点(FTTN)、光纤到驻地(FTTP)及FTTH等4种模式。
  目前,国内外各大运营商已部署的FTTX大致有2种模式。一种选择是FTTP/FTTH.NTT采用这种模式已经有几年了,并与2005年宣布一项新的计划,到2010年将突破3000万用户。在美国,Verzon在2004年开始其FTTP计划。其他在欧洲和北美的运营商、市政当局和开发者也开始实施他们的计划。另一种选择是FTTC/FTTN并用高速铜线技术连接到用户。采用这种模式的有美国的SBC和Bell-South、韩国的KT和欧洲的几个主要的PTT.
  2.1FTTN/FTTC模式
  2.1.1FTTN
  FTTN是FTTX中光纤使用比例最小的解决方案。由于干线光纤提供了大的传输容量,所以可以充分利用已有的铜缆。一些运营商都把它作为向FTTH的过渡方案。
SBC在2005年启动总投资为40亿美元的“光速”计划,3年内投资40亿-60亿美元,对于原来已经有基础设施的区域,建设FTTN+ ADSL2+/VDSL2宽带接入设施,而对于原来基础设施空白的区域,实施FTTP.到2007年覆盖1900万个家庭用户(1800万FTTN+ ADSL2+/VDSL2,100万FTTP),覆盖目标用户达到90%以上。
  BellSouth采用FTTN+ADSL2+/VDSL的方式。预计2009年FTTH用户达150万-300万。
  2.2FTTP/FTTH模式
  2.2.1FTTP
  2004年7月Verizon启动了名为FIOS的高速光纤网络服务计划。FIOS就是通过FTTP为用户提供达30Mbit/s数据网络连接,从而为提供包括IPTV在内的基于互联网协议(IP)的服务提供网络基础。VerizonFTTP网络结构如图1所示。

  图1 VerizonFTTP网络结构
  2.2.2FTTH
  日本对于FTTH的研究由来已久,1996年NTT建设了第一个BPON实验网络,1998年NTT和BellSouth联合制定了第一个BPON 标准,并且开始了BPON商用网络的运营。日本的许多家运营商都在2005年针对FTTH市场发起进攻,FTTH市场成为日本网络接入市场中的热点。
  FTTX的各种模式互相渗透,不是互不相容的。FTTN和FTTC没有投资风险,同时,这2种方案又能充分利用已有的铜缆接入网,也能提供足够的回路容量,可以比FTTP更早地提供FTTP现在能提供的业务。为了立刻获得收入以及为最终目标FTTP筹措资金,运营商可以采用FTTN和FTTC作为过渡方案来减小有线电视提供商的威胁。
  3、结束语
  运营商在大规模的部署FTTX前,应充分了解FTTX的市场特点,既不能忽略FTTX的技术风险,盲目追求高带宽,全业务接入,也不因FTTX网络建设的高投入,而无所作为。要用发展的眼光分析其投资效益,选择合理的建网方案。

MSN:fengdou168@hotmail.com

类别: 无分类 |  评论(0) |  浏览(5020) |  收藏
2007年12月18日 14:02:57

平面波导型和熔融拉锥型光分路器




    随着通讯市场新增值业务如可视电话、IPTV、网络游戏等的不断推出,用户对带宽的要求不断提高,现有的以铜缆为主的XDSL网络已不能适应用户的需求。光进铜退已是大势所趋,特别一些发达国家如日本、美国、韩国等已将光纤到户   (FTTH)作为国家战略加以鼓励发展。无源光网络(PON)已经成为各国FTTH的首选接入方案。
    光分路器(splitter)作为连接光线路终端(OLT)和光网络单元(ONU)的核心光器件,其质量性能成为网络是否可靠安全的最关键器件之一。

    目前,光分路器主要有平面光波导技术和熔融拉锥技术两种,熔融拉锥技术又可以分为一次熔锥光分路器和多个1×2串接式光分路器。三种结构的原理图见图1。
    下面对二种产品技术作简要介绍
    ㈠平面波导型光分路器(PLC Splitter)
此种器件内部由一个光分路器芯片和两端的光纤阵列耦合组成。芯片采用半导体工艺在石英基底上生长制作一层分光波导,芯片有一个输入端和N个输出端波导。然后在芯片两端分别耦合输入输出光纤阵列,封上外壳,组成一个有一个输入和N个输出光纤的光分路器。(见图2a、图2b)
    根据用户需要,可以将输入输出为裸光纤的器件,封装在各式封装盒中,输入输出光纤用松套管保护,并可以外接各种连接器。(见图2c)
    该技术由于采用半导体技术,工艺稳定性、一致性好,损耗与光波长不相关,通道均匀性好,结构紧凑体积小,大规模产业化技术成熟,已经被日本、美国、韩国、法国等多数国家指定采用技术。常用的光分路器有1×N和2×N(N=4,8,16,32,64)
    ㈡熔融拉锥光纤分路器(FBT Splitter)
    熔融拉锥技术是将两根或多根光纤捆在一起,然后在拉锥机上熔融拉伸,拉伸过程中监控各路光纤耦合分光比,分光比达到要求后结束熔融拉伸,其中一端保留一根光纤(其余剪掉)作为输入端,另一端则作多路输出端。图3是两根光纤熔融拉伸后光纤模场截面示意图。
    一次拉锥技术是将多根光纤捆在一起(见图1b),在特制的拉锥机上同时熔融拉伸,并实时监控各路光纤的损耗。目前成熟的一次拉锥工艺已能一次1×4以下器件。实验室有1×8的记录,但批量生产工艺还未成熟。目前国外FTTH工程中,低分路光分路器(1×4以下)常采用一次拉锥技术器件。(图4a为1×2实物图)

    串接式熔锥1×N分路器件都是由(N-1)个1×2拉锥单元串联熔接一个封装盒内(图1C为原理图,图4b为1×8封装盒内实物图片)。由于单元之间光纤需要熔接,而光纤需要有最小弯曲半径,通常体积会较大,例如:1×8光分路器由7个1×2单元熔接而成,封装尺寸通常为100×80×9mm。
    两种器件性能的比较
    1、工作波长
    平面波导型光分路器对工作波长不敏感,也就是说不同波长的光其插入损耗很接近,通常工作波长达到1260~1650nm,覆盖了现阶段各种PON标准所需要的所有可能使用的波长以及各种测试监控设备所需要的波。
    拉锥型光分路器,由于拉锥过程产生的光纤模场的变化,需要根据需要调整工艺监控工作窗口,根据需要可将工作波长调整到1310nm,1490nm,1550nm等工作波长(俗称工作窗口)。通常单窗口和双窗口的器件工艺控制较成熟,三窗口工艺较复杂。工艺控制不好的情况下,随着工作时间延长和温度的不断变化,插入损耗会发生变化。
    2、分光均匀性
    平面波导器件的分光比由设计掩膜版时决定的。目前常用的器件分光比都是均匀的。由于半导体工艺的一致性高,器件通道的均匀性非常好。可以保证输出光的大小一致性好。
    拉锥型分路器的分光比可根据需要现场控制,如果要求1×N均分器件,则用N-1个均分1×2组合而成。因为每个1×2器件不可能做到完全均分,所以串接而成的1×N器件最终的各通道输出光不均匀性被乘积放大,级数越多,均匀性越差。如果要求均匀性好,需要经过精确计算配对。
    拉锥型分路器分光比可变是此器件的最大优势。有时,由于用户数量和距离的不一致性,需要对不同线路的光功率进行分配,需要不同分光比的器件,由于平面波导器件不能随时变化分光比,只能采用拉锥型分路器。
    图5中,是两种1×8器件用1270~1600nm宽带光源扫描测试的插入损耗,浅色的PLC器件,深色的是拉锥型分路器,其中每一条曲线是某一通道的插入损耗扫描图。从图中可以看出,PLC的8个通道的损耗随着波长的变化很小,通道的均匀性也很好;拉锥型的分路器随着波长的变化损耗变化很大,只要1310和1490附近损耗较小,同时,图5,1×8 PLC与FBT测试比较均匀性较差。
    3、温度相关性TDL(Temperature Dependent Loss)
    平面波导器件工作温度在-40~+85℃,插入损耗随温度变化而变化量较小;拉锥型分路器通常工作温度在-5~+75℃,插入损耗随温度变化的变化较大,特别是在低温条件下(<-10℃),插入损耗不稳定。
    我们测试1×8PLC Splitter从-40~+85℃插入损耗变化量在±0.25dB,从-5~+75℃插入损耗的变化量约±0.15dB
  1×8FBT Splitter从-5~+75℃插入损耗的变化量约±0.45dB
    4、偏振相关损耗PDL(Polarisation Dependent Loss )
  PLC偏振相关损耗很小,1×32以下通常在0.1~0.2dB。1×2FBT   PDL在0.15dB左右,随着串接的器件越多,PDL也会叠加,1×8的将近0.45dB左右。
    5、体积
    PLC的器件体积很小,博创1×32的器件体积50×7×4mm,多分路拉锥的器件由于需要多个器件熔接,光纤弯曲要求最小直径>30mm,通常1×8器件直径在100×80×9mm。
    在实验室测试时体积一般不会成为主要问题,但在大规模组网时,考虑到集成布网的空间,体积显得非常重要。
  6、成本
  PLC的主要成本主要是设备成本和材料成本(芯片和光纤阵列)。该器件的生产设备昂贵,但这是一次性投入,随着生产规模扩大,产量越大,通道数越多,平均分摊到每个通道的成本越低。
    拉锥器件成本主要是人工成本和合格率成本。原材料成本很低(石英基板, 光纤, 热缩管, 不锈钢管等),低分路器的成本很低,高分路器件成品率较低,高分路器件成本较高。
  按目前的生产成本,PLC与三窗口拉锥分路器相比,1×8是临界点,1×16以上PLC性价比明显占优,1×4以下拉锥型分路器性价比占优。
  7、可靠性
  无源光网络(PON)比有源光网络(AON)的最大优势就在于无源光网络除局端和用户端外,中间线路全部是无源设备,可靠性好,运营维护成本低。
  ㈠平面波导器件与拉锥型分路器比较,其可靠性占有明显优势,主要有以下三点:(1)故障点不一样:平面波导器件理论上只在芯片和两个光纤阵列之间有两个交接面存在故障点,而1×N拉锥型分路器有2N-3个故障点(N-1个单元,N-2个熔接点)。故障点的增多,可靠性就会降低。
    如下图6,1×8两种器件比较。1×8拉锥器件有13个故障点,PLC器件只有两个。
    ㈡分光比是否变化:平面波导器件分光比由芯片决定,芯片本身不会变,同时芯片与光纤阵列耦合面是面接触,面接触很稳定,不会发生位移。博创科技到2007年已出货20多万只各类型号器件,未发生一只分光比变化超标。拉锥型光分路器工艺控制不好的情况下,分光比会因时间变化而发生变化。
    拉锥型分路器由于节点多,光纤拉伸过程中容易发生划痕等微观缺陷,因此,其抗机械冲击、机械振动性能较差。使用时不能剧烈撞击或跌落。
    总结
    综上所述,平面波导和拉锥型两种光分路器各有优缺点,拉锥型器件由于产品生产历史长,工艺比较普及,设备成本较低。在成本方面有明显优势。低分路情况下其技术指标与平面波导型相差不明显。因此,低分路(1×4以下)有明显优势。在高分路情况下,由于其成本优势不明显,加上技术指标均匀性较差,工作波长限制,以及可靠性等方面有明显劣势。
    平面波导光分路器由于生产设备较贵,工艺技术水平较高,有一定的技术和资金门槛,成本相对较贵。由于芯片制作具体大批量、规模化特点,器件的成本摊薄到每路成本,多分路器件的成本相对低,低分路相对较高。产品性能、可靠性方面,平面波导分路器具有明显的优势。
    现在市场上拉锥型分路器供应商比较多,如果按照Telecordia标准严格进行各种老化等工艺,成本比较高。但现在有很多公司只有一台拉锥机,没有试验老化设备,更没有净化车间等硬件条件,用的材料也是低质品,成本很低。这些产品主要有以下问题:分光比不稳定,时间长了会发生劣化;撞冲击能力差,拉锥单元内光纤易断;耐高低温能力差,经过冷热变化,会发生断纤等现象。
    随着使用PON技术的FTTH在全球的迅速扩张,光分路器用量迅速膨胀,PLC   Splitter的优点得到充分发挥,随着产量的急剧扩大,其成本也快速下降,其性价比已明显优于拉锥型分路器。美国、韩国、欧洲法国等国均指定使用PLC产品,日本考虑成本因素规定1×4及以下采用拉锥型(一次拉锥产品),1×8以上产品全部使用PLC。
  在器件选择方面,我们建议如下:
  根据使用需要,如果只是单波长传输,或双波长传输,从成本角度考虑可以选用拉锥器件,如果是PON技术的宽带传输,考虑到以后的扩容和监控需要,优先选用平面波导器件。
    低分路器件(1×4以下)可以选用拉锥器件,高分路器件(1×8以上)优先选用平面波导器件。■ Msn: fengdou168@hotmail.com

类别: 无分类 |  评论(0) |  浏览(10199) |  收藏
2007年12月18日 14:00:33

平面波导技术及器件发展动态及市场前景



摘要 本文介绍了平面波导技术及器件的发展情况,并概要指出了平面波导光器件的市场前景和发展方向。
  
  关键词 PLC、Polymer、InP、AWG
  
  1概述
  光波导是集成光学重要的基础性部件,它能将光波束缚在光波长量级尺寸的介质中,长距离无辐射的传输。平面波导型光器件,又称为光子集成器件。其技术核心是采用集成光学工艺根据功能要求制成各种平面光波导,有的还要在一定的位置上沉积电极,然后光波导再与光纤或光纤阵列耦合,是多类光器件的研究热点。
  
  2技术种类
  按材料可分为四种基本类型:铌酸锂镀钛光波导、硅基沉积二氧化硅光波导、InGaAsP/InP光波导和聚合物(Polymer)光波导。
  
  LiNbO3晶体是一种比较成熟的材料,它有极好的压电、电光和波导性质。除了不能做光源和探测器外,适合制作光的各种控制、耦合和传输元件。铌酸锂镀钛光波导开发较早,其主要工艺过程是:首先在铌酸锂基体上用蒸发沉积或溅射沉积的方法镀上钛膜,然后进行光刻,形成所需要的光波导图形,再进行扩散,可以采用外扩散、内扩散、质子交换和离子注入等方法来实现。并沉积上二氧化硅保护层,制成平面光波导。该波导的损耗一般为0.2-0.5dB/cm。调制器和开关的驱动电压一般为10V左右;一般的调制器带宽为几个GHz,采用行波电极的LiNbO3光波导调制器,带宽已达50GHz以上。
  
  硅基沉积二氧化硅光波导是20世纪90年代发展起来的新技术,主要有氮氧化硅和掺锗的硅材料,国外已比较成熟。其制造工艺有:火焰水解法(FHD)、化学气相淀积法(CVD,日本NEC公司开发)、等离子增强CVD法(美国Lucent公司开发)、反应离子蚀刻技术RIE多孔硅氧化法和熔胶-凝胶法(Sol-gel)。该波导的损耗很小,约为0.02dB/cm。
  
  基于磷化铟(InP)的InGaAsP/InP光波导的研究也比较成熟,它可与InP基的有源与无源光器件及InP基微电子回路集成在同一基片上,但其与光纤的耦合损耗较大。 
  
  聚合物光波导是近年来研究的热点。该波导的热光系数和电光系数都比较大,很适合于研制高速光波导开关、AWG等。采用极化聚合物作为工作物质,其突出优点是材料配置方便、成本很低。同时由于有机聚合物具有与半导体相容的制备工艺而使得样品的制备非常简单。聚合物通过外场极化的方法可以获得高于铌酸锂等无机晶体的电光系数。德国HHI公司利用这种波导研制成功的AWG在25-65℃的波长漂移仅为±0.05nm。几乎任何材料都可以作为聚合物的衬底。成本低廉,发展前景看好。
  
  此外,为了得到更好的光波导性能,许多研究机构正在探索在新型材料上的波导制造方法。目前,有机无机混合纳米材料的平面光波导已研制成功,兼具有机与无机材料的优点,如性能稳定可靠、加工容易、能依需求调控光学性能等。由于新材料具有感光特性,在制造工艺上以显影方式直接做出的导光线路,将能进一步应用以低成本的简单工艺,更可大幅减少器件制造商的设备投入成本。
  
  3产品开发情况
  目前,光通信应用最多的平面光波导器件主要包括有:各类光耦合器(Coupler、Splitter)、平面波导阵列光栅(AWG)、interleaver、大端口数矩阵光开关(Switch)、阵列型可变光衰减器(VOA)、可调谐光滤波器(OTF)、EDWA及可调谐增益均衡器等。
  
  (1)光耦合器
  
  硅基SiO2光波导技术制作的1×N 分支光功率分配器(Splitter)是平面波导结构的一种基本应用,它具有传统光纤耦合器所无法相比的小尺寸与高集成度,而且带宽宽、通道均匀性好。日本NHK推出的1 x N (N = 4,8,16,32)系列
  
 

  波导耦合器(图1、图2)具有均匀性好(£2.2dB,N=32),PDL指标低(£0.3dB,N=32、16)的特点,分别可用于1260-1360和1480-1580波段。而Nx N (N = 4、8、16)星型耦合器的耦合比可实现20% 到 80%.的定制。
  
  法国光子集成公司Teem在2003初推出的基于平面波导技术的Nx N 系列8x(1x2), 16x(1x2), 4x(1x8), 8x(1x4), 2x(1x16)等分路器阵列,尺寸只有70 x 13 x 5.6 mm,是FBT同类产品尺寸的1/10,具有非常小的插损和回损指标,并已经通过Telcordia GR-1209 和 GR-1221测试。
  
  (2)平面波导阵列光栅(AWG)
  
  阵列波导光栅是基于干涉原理形成的波分复用器件,其基本结构由3部分组成:输入/输出光波导阵列、自由传播区平板波导和弯曲波导阵列。弯曲波导之间有固定光程差,使得不同波长的光信号在输出自由传播区干涉,并从不同输出波导口输出。目前平面波导型WDM器件有各种实现方案,其中比较典型的称为龙骨型的平面波导AWG器件最为普遍,如图3所示。该类器件通路数大、紧凑、易于批量生产,但带内频响尚不够平坦。
  
  AWG是第一个将平面波导技术应用于商品化的元件。其做法为在硅晶圆上沉积二氧化硅膜层,再利用微影制程(Photolithography)及反应式离子蚀刻法(RIE)定义出阵列波导及分光元件等,然后在最上层覆以保护层即可完成。AWG的制作材料除SiO2/Si外,InGaAsP/InP和Polymer/Si也常被采用。InGaAsP/InP系的AWG被看好的原因在于它尺寸小并能与InP基有源与无源光子器件及InP基微电子回路集成在同一基片上。
  
  首先提出AWG概念的荷兰人在两年前制作出了有别于龙骨型的AWG结构。
  
  
 

  4为荷兰微系统技术公司(mikro systemtechnik)在TiO2/Al2O3平面波导上采用“自聚焦传输光栅(self-focussing Transmission Grating)”制作的垂直锥形波导AWG,由于TiO2和 Al2O3有较高的折射率差,其通道间隔可以作的很窄(典型值为0.3 nm)。
  
 

  AWG光波导的通道数由最初的16通道已发展到400个通道,最高记录为NTT利用两种类型的AWG的串联连接法(宽分波带宽的前级+窄通道间隔的后级)首次实现了1000个通道。目前商用流行的仍以40通道为主流。
  
  (3)Interleaver
  
  图为荷兰Twente大学的研究人员在SiON波导上采用非对称马-择(Mach- Zehnder)干涉仪和环行共振腔技术实现了 Interleaver功能,可将50 GHz间隔的波长交错分离,信道隔离度可达30dB。
  
 

  (4)大端口数矩阵光开关(Switch)
  
  平面波导型开关主要包含热光开关、电光开关和全内反射型开关。
  
  热光开关是利用硅波导的热感应折射率变化制作的,其M-Z腔由二个3dB耦合器和二个波导臂组成的,其中一臂上加有热光相移薄膜加热器。通过受热和非受热实现开关功能。
  
  电光开关与热光开关的波导结构相似,但采用电折变效应来实现对波导臂的光程差调制。由于Si材料为中心反演对称结构,泡克尔效应极弱,电光系数很小,因此难以利用场致折变效应,只能利用Si材料中的等离子色散效应,于是Si波导层中需要制备p-n结,以实现高浓度载流子的注入。InGaAsP/InP材料有较强的泡克尔效应和较大的电光系数而成为该类开关的研究热点。
  
  全内反射型开关又叫气泡开关,利用了热毛细现象。是在波导的交叉点上垂直形成窄矩形槽,槽内封入少量折射率匹配油,薄膜金属加热器淀积在槽的端上,通过加热使槽内的油产生气泡以改变波导交叉点的折射率来实现开关功能。
  
  日本NTT已制作了16´16的热光开关和32´32的全内反射型开关,消光比可达50dB以上。
  
  (5)阵列型可变光衰减器(VOA)
  
  首先将聚合物光元件产品通过严格的Telcordia标准的Gemfire公司推出的基于热光聚合物波导的VOA系列产品中有8端口和16端口两种,且8端口VOA具有关断功能,两者均尺寸小,功耗低。今年初,Gemfire在完成了对Avanex位于苏格兰Livingston的平面硅波导线路业务部门的收购后,最近又传出完成了对拥有有源平面硅处理工艺-雪崩二极管技术的NovaCrystals公司的收购。这将使Gemfire成为全面掌握平面波导技术的领先者。
  
  (6)可调谐光滤波器(OTF)
  
  该类器件大多利用铌酸锂良好的电光特性,在单片平面波导结构上实现可调谐滤波功能。上世纪末,美国物理研究所在氟化聚合物平面波导上掩模形成布拉格光栅,成功地实现了在1.55 µm波段11nm的可调谐滤波,串音-20 dB,插损3.2 dB。
  
  (7)EDWA
  
  EDWA一般由内嵌制作在Er3+:Yb3+共掺杂玻璃基片上的光波导组成。光波导结构能够将泵浦光能量约束在截面积非常小、长度较长的区域内,只需使用数厘米长高浓度的掺铒增益介质,就可以得到常规掺铒光纤几十倍的单位长度光增益。法国Teem光子公司于1998年末首先发布采用非刻蚀或沉积的离子交换法,在玻璃薄片而不是在硅片上制作波导,具有非常低的偏振和损耗特性。随后,美国Northstar光子公司及JDSU也采用了此技术。丹麦NKT集成公司推出的C带(1528-1562nm)20dB高增益EDWA,采用了980nm/100mW泵源,可单片集成多个放大器。随后,Teem光子公司和NKT集成公司同时发布采用PECVD制造技术,基于multi-source agreement(MSA)发展的4端口全集成EDWA,每端口可达10dBm的输出。美国Inplane光子公司也推出类似产品。此外NKT公司还可提供4及8端口可以分别控制的EDWA,且采用的是非致冷的980nm泵源,其可靠性测试通过了Telcordia GR-1312标准。
  
  (8)可调谐增益均衡器
  
  IBM苏黎士实验室在SiON波导上制作非对称马-择腔,采用加热一个波导臂的方法可动态控制EDFA光放大器的增益,如图6所示。采用7个这样的结构级联,可实现增益平坦度小于0.5 dB。
  
  4主要供应商及市场情况
    据市场调研公司ElectroniCast(美)在2002年末的一项市场分析报告称,2010年前,平面波导光器件的增长率将会达到两位数,而到2006年前,将持续30多个百分点之高的增长率。2001年市场总额为1.73亿美元,到2011年,该市场总额将会超过42亿美元。此外,CIR(美)及RHK(美)的市场调研报告均对平面波导光器件的市场前景充满信心。
  5 结语
  建立在平面光波导(Planar Lightwave Circuit, PLC)技术之上的光器件,具有成本低、体积小、便于批量生产、稳定性好及易于与其它器件集成等优点。目前,集成光学元件已在通信、军事、电力、天文、传感等应用领域中发挥着重要作用。为提高光波导元件的集成度,现在已有不少的研究机构在进行三维光波导器件的研制,其目的是进一步增加光波导的通道数目。

类别: 无分类 |  评论(0) |  浏览(3221) |  收藏
2007年12月18日 13:57:43

AWG阵列波导光栅(PLC)


  阵列波导光栅(AWG Arrayed Waveguide Grating)是实现多通道密集波分复用(DWDM Dense Wavelength Division Multiplexing)光网络的理想器件,插入损耗是它的一个重要性能指标.本文介绍了多种减小AWG插入损耗的方法,并在此基础上,分析了如何使用楔形波导结构来降低模式失配所导致的耦合损耗.这种方法可以在不增加器件制作难度的同时大大降低AWG的插入损耗,并且适用于各种材料和结构的AWG器件设计.

阵列波导光栅(AWG)技术的新发展不仅为AWG赢回了大容量应用市场的主导地位,并且使AWG在小容量应用市场上获得了相当的份额。AWG在DWDM系统中提供复用和解复用功能,它可以把40到80个不同的DWDM波长信道复用到一根光纤当中,并在网络的另一端把这些波长信道分离开来。也就是说一个40信道的AWG可以代替40个不同的薄膜滤波器(TFF)。
更重要的是,AWG的关键技术——平面光路技术(PLC)——可以实现的功能远远不止复用和解复用,它还可以实现功率分配、交换、监测和光强可变衰减等功能。目前,能够同时实现100多项功能的PLC芯片已经问世。
就像集成电路取代三极管分立器件电路一样,未来的光通信系统将会在这种集成的单片光系统的基础上构建起来。不过要让这一切变成现实,每种集成模块的功能和分立器件相比,必须具有竞争力。随着新型集成模块的推出,这个目标正在逐步实现,对于AWG来说,它在越来越大的市场范围内,正凭借着自己的成本和性能优势,从分立的TFF器件手中赢得大量的市场份额。

盛极而衰——能否重现辉煌?<
PLC首度商用化是在1990年代末的电信泡沫时期,它把半导体工业的生产模式带入了光器件产业。当时,利用分立的光器件和各种光网络技术可以把单根光纤上的信息容量从每秒百兆比特提高到每秒太比特。不过分立器件价格高,而且体积和可靠性都达不到当时要求的理想水平。而PLC技术采用制造集成电路的设备和工具,大规模地生产集成光路,另外,PLC技术在降低成本的同时还能够增强器件的功能。
在通信系统中,第一个PLC的商用产品就是AWG。AWG迎合了泡沫时期通信容量暴涨的思路,追求更多的信道数量和更大的容量。然而从2001年开始,泡沫经济的破灭和电信业的滑坡戏剧性地改变了光器件市场的环境。其实,直到现在为止,AWG都是大容量DWDM系统最好的复用和解复用技术,它的单信道平均成本低、损耗小,而且一致性强。另外,由于AWG是集成系统,它的成本和性能几乎和信道数无关。而对于分立TFF来说,每增加一个信道就意味着增加一个分立的滤波器,所以它的成本将随着信道数的增加而线性增加,而性能却反而降低。
在泡沫时期,大家都认为数据量的爆炸性增长会让系统中的所有信道迅速派上用场,所以AWG的上述特点是它的绝对优势。而在泡沫破灭之后,大家清楚地认识到业务量将会相对平稳地增长。所以运营商在部署系统的时候,考虑的最重要的因素变成了“初装成本”,换句话说:运营商希望用最低的成本建立起第一条信道,而以后添加信道所用的成本显得并不是那么重要了,因为只有当数据量需求足够大,证明确实有必要支付这笔费用的时候,才会真正添加信道。
运营商这种思路的变化对AWG是很不利的。原因主要有两个:首先,因为AWG是集成的,所有通道必须一次性安装,这样就增加了“初装成本”。当然,没有必要把所有的收发器一次性都装上,所以,这里计算的成本只是为了激活一条信道的基本成本,实际上它只是一次性建立所有信道成本的一小部分,不过这似乎还是有些贵。其次,AWG需要动态温度控制来保证它的输出波长与ITU标准波长一致。虽然机架的供电成本如果由40个信道来分担会比较划算,不过初装成本还是很可观的。综上所述,尽管从整个寿命期内的总成本的角度考虑,AWG仍然是最佳的方案,TFF还是凭借 “初装成本低”的优势被业界人士再度看好。
不过,PLC的生产商并没有因为电信业的寒冬而一蹶不振,他们对AWG技术做了很多改进,使AWG得以在新的环境中继续保持竞争力并在竞争中获胜。首先,AWG是一个相对较新的技术,近几年它的光学性能有了很大的提高。例如,插入损耗已经降低到原来的一半,通带宽度也增加了50%多,这些性能的提高使AWG在小容量应用方面竞争力显著增强。其次,AWG成品率的显著提高使得成本迅速下降,40通道AWG的成本已经降得非常低。由于上述原因,很多设备商,尤其是亚洲的设备商已经把AWG作为一个标准器件,从其低廉的寿命期内总成本中获益良多。
不仅如此,AWG的两项技术突破还让它走进了原来被TFF占领的市场。第一项技术突破是研制成功了全波段AWG,或者称作“波长无关”AWG。这种AWG可以工作在任何波段,它用一种器件代替了12种不同的器件。第二项技术突破是“抗温漂”AWG的研制成功。抗温漂AWG不需要耗费电能来控制温度。这两种新型AWG不仅具备了TFF的所有优势,并且使AWG拥有了TFF所不能比拟的新优势,从而使AWG能在更广泛的市场范围内迅速地获得认可。

全波段AWG
现在,在铺设长途光纤网络的时候,运营商希望初装成本最低,也就是说运营商希望开始的时候只安装几条信道。不过为了在未来网络扩容时不会捉襟见肘,他们也要求系统可以扩容至整个C波段的80~96个信道(以50GHz为间隔)。如果采用TFF技术,这两个互相矛盾的要求造成的后果就是:器件生产商要生产出96种不同的滤波器,而设备商处境更狼狈,虽然客户开始时只使用几个滤波器,但是他们还是要把这些器件都储备起来,以备网络扩容时使用。
另外,为了平衡衰减,这些滤波器通常成组采用,即相邻八个信道的段内滤波器构成一组。这样96个信道的系统就需要12组不同波段的8信道模块。很多运营商开始组网时只安装一个波段,等到业务量增加,要求扩容时,再加入新的波段。然而所有的器件都必须生产出来,器件数量达到12组,这无疑增加了生产和库存管理的成本。
对这个问题,AWG提供了一个简单和高性价比的解决方案。顾名思义,AWG是一种光栅,当光程差等于波长整数倍的时候(也就是=nλ,n称为光栅的阶数)光栅就会发生干涉现象。而且这种干涉现象在光程差为波长的n+1或者n-1倍的时候也会发生。所以完全可以设计一个光栅,它的n阶匹配第一波段,而它的n+1阶匹配第二波段,n+2阶匹配第三波段,依此类推。而且,它的自由频谱范围FSR和波段间隔刚好一致。
这样的AWG被称作全波段AWG。图1所示的就是这样一个AWG,这里为了消除所有信道的插入损耗,一个输入端口用于奇数波段,另一个输入端口用于偶数波段。



全波段阵列波导光栅采用两个输入端以消除各个信道的插入损耗,这两个输入端分别负责奇数波段和偶数波段。
图2是全波段AWG的复合输出频谱,信道间隔为50GHz,每个循环跨度为8个信道。图中红色的信道是奇数波段的信道,蓝色的是偶数波段的信道。作为解复用器时,第一个波段的第1到第8信道分别从1号到8号光纤输出,第二个波段的第9到第16信道分别从1号到8号光纤输出,第三个波段的第17到第24信道分别从1号到8号光纤输出,依此类推。这样,同一个器件可以在任何波段使用,需要生产和库存的器件的数量降低了,从12个变成了1个。



全波段阵列波导光栅的独特结构使它能够用于任何波段,和薄膜滤波器相比,使用全波段阵列波导光栅极大地降低了对库存的要求。
因为只需要一种器件就可以完成多种器件的功能,所以无论运营商采用哪个波段,或者希望升级加入哪一个波段,库存管理和备货的费用都可以降低50%,同时AWG和TFF或者布拉格光纤光栅相比,还有一个优势:它在50GHz间隔的系统中色散要小得多,也平滑得多。

抗温漂AWG
由于玻璃材料反射系数的原因,AWG的中心波长会随着温度的不同有所变化,温度每变化1摄氏度,AWG的信道将会漂移11pm。标准的AWG中,这种温漂是由有源温度控制器来抑制的,以保证AWG的信道与ITU标准相符。为了不影响系统的性能,AWG芯片的温度变化必须保持在±1℃之内。曾经开发出一些无源温漂补偿技术,但是这些技术大多都会使系统的性能有所下降。在电信泡沫时期,性能是要考虑的首要问题,系统设计者宁愿消耗电能控制温度,也不愿容忍AWG影响系统的性能。但是,现在成本是最重要的。
新开发出来了一种实用且耐用的抗温漂AWG,它使用机械方法补偿温漂,其性能和标准的AWG相当。AWG实际上是一个波前准确度优于λ/200的超高质量的干涉仪,也就是说,AWG的所有零部件都必须非常完美,不能有一点儿的缺陷或者不规范,所有部件的光学相位误差必须小于两度。和以往的抗温漂方法不同,这种新方法不是把光从玻璃中分离出来,因为这样会干扰波前,而是机械地来移动波导“捕捉”合适的波长信道。
图3显示了这种新型抗温漂AWG的信道中心波长与ITU标准波长的偏差随温度的变化。从0℃到-60℃,此偏差只相当于标准AWG的温度变化±1℃时波长的变化,从-30℃到+70℃,此偏差也只相当于标准AWG温度变化±1.5℃时波长的变化。由此可见,抗温漂AWG把低成本优势和标准AWG的高性能优势结合了起来,而且它是无源的。



抗温漂AWG在机械补偿温漂的同时还表现出了优良的性能。
抗温漂技术为AWG开辟了两个新的市场。一个是,在机架不能提供电功率或者不方便提供额外电源进行温度控制的时候,AWG可以代替TFF用于DWDM系统的复用器/解复用器模块。这种DWDM系统一般用在长途网络和城域网当中,AWG的高性能和低成本的优势对这些网络尤其有益。这个市场即使不会迅速扩张,也会有相当的增长。
另一个更富有潜力的市场是新兴的WDM-PON系统,最近韩国电信宣称已开始招标建设这个系统。因为WDM-PON系统要求在室外-30℃到70℃的温度范围内都可以正常运行,而TFF的温漂大,不符合室外WDM-PON系统的应用要求,所以系统可能会使用大量的抗温漂AWG以提供超过百兆的光纤到户业务。
再现辉煌
由于AWG性能获得了极大的提高,成本显著降低,加上全波段AWG的开发成功,AWG已经逐渐地从TFF手中赢回不少的市场份额,准备再现电信泡沫时期的辉煌。不仅如此,AWG只是采用PLC技术的众多产品中的一种。使用可变光衰减器制作的复用器、阻光器,可重配置光分插复用器都是把多项不同的功能集成于一个PLC芯片的光集成产品,它们也以低成本高性能的优势赢得了市场的关注。同时,还有几家公司正在开发基于PLC技术的混合收发器,如组合了波导芯片、激光器和光探测器的用于光纤到户的三波收发器。
未来的光纤器件工业将发扬PLC低成本、高性能的优势,生产出高度集成,多功能的“单片光系统”。AWG正是构建这些集成系统的一个重要模块。从AWG最近的发展情况看,它已准备挑起这副重担。

类别: 无分类 |  评论(0) |  浏览(7801) |  收藏
2007年12月18日 13:56:14

高密度列阵光纤—光波导耦合技术的最新进展



前言
  早在六十年代初就有人提出了光路集成的概念,直到六十年代末,才正式提出集成光学的设想,从此掀起了集成光学研究的新 热潮。集成光学这一新学科的诞生引起全世界物理学、化学和材料科学等领域科学家的极大关注。人们预计,集成光学会将象集成电子学一样,将引起信息技术发展的深刻变革。由于集成电子学的示范效应,使得各国科学家纷纷选择最有潜力的发展方向,不断的发展和完善各种集成光学器件。时止今日,它已经历了近三十年的发展历史,建立了自己的理论体系、实验方法和工艺手段,并取得了大量辉煌的研究成果,为世人所瞩目。集成光学已成为一门光学和薄膜电子学交叉的新学科,越来越受到人们的重 视。目前,集成光学元件已在通信、军事、电力、天文、传感等应用领域中发挥着重要作用。集成光学元件的最大优点之一是它能将常规的具有各种功能的分立光学元件集成到同一光学衬底表面,并且具有多个分立光学元件所构成的庞大光学系统处理光信号的同样功能。与分立光学元件相比较,集成光学元件具有体积小、结构紧凑坚固、抗干扰能力强、稳定可靠、寿命长等优点。尤其是在军事部门的应用,更具有常规光学系统无法比拟的优越性。
集成光波导器件的发展趋势
  光波导(简称波导)是集成光学重要的基础性部件,它能将光波束缚在光波长量级尺寸的介质中,长距离无辐射的传输。光波导器件与常规的分立光学元件相比,它们之间的根本差别在于波导中传播光波的模式是分立的。在集成光波导器件的研究方面,人们已经研制了众多不同功能的光波导元器件,其中很多光波导器件的性能远远优于分立元件的性能。经过了三十多年的发展,集成光波导器件的研究已从最初的单元件、单功能光波导器件,向多功能、多元件单片集成的方向发展。近几年,随着光纤通信需求量的高速发展,推动了集成光波导器件的研究向高性能、高密度集成光波器件的方向发展。目前,光通信应用最多的光波导器件主要包括有: N×N 光波导星型耦合器、列阵光波导光开关和列阵波导光栅( Array Waveguide Grating 简称 AWG )等等。
  LiNbO 3 晶体是一种比较成熟的材料,它有极好的压电、电光和波导性质。除了不能做光源和探测器外,适合制作光的各种控制、耦合和传输元件。 LiNbO 3 光波导的制作,可以采用外扩散、内扩散、质子交换和离子注入等方法来实现。通常采用 Ti 的内扩散工艺制备光波导,它具有传播损耗较低,一般为 0.2 ~ 0.5dB / cm ;模式尺寸与单模光纤能很好匹配,光纤一波导的耦合损耗一般是 ldB 左右,最低已达 0.15dB ;调制器和开关的驱动电压一般为 10V 左右,最低已达 0.35V ;一般的调制器带宽为几个 GHz ,采用行波电极的 LiNbO 3 光波导调制器,带宽已达 40GHz 。 Ti 扩散 LiNbO 3 光波导器的研究有 1 × 64 、 64 × 64 、 1 × 128 通道器件, 并已着手研制 256×256 巨型开关网络,用集成光学技术还可制造出更大的无源开关系统(如 1024 ×1024 )。
  AWG 器件是最近几年发展最快的集成光波导器件,随着波导制备工艺的不断完善, AWG 光波导的通道数已由最初的 16 通道已发展到 265 个通道,现在人们正在研究集成密度更高的 AWG 器件。在 AWG 器件的研究和产业化方面,日本的一些大公司间的竞争非常激烈。 NEC 的 AWG 模块已形成产品,并开始向国内外出售。 40 个通道的 AWG 的样品是目前 AWG 的主流产品。目前 NEC 的产量规模为月产约 200 个,一年以后预计月产 1000 个。去年 DWDM 通信系统的通道数主要是 32/64 个通道,预计今年下半年开始可能增至 160 个通道; NTT 研制成功了 AWG 器件,并利用两种类型的 AWG 的串联连接法首次实现 1000 个通道。这种方法就是将具有宽的分波带宽的前级 AWG 和 10 个窄通道间隔的后级 AWG 串联连接起来。前级 AWG 的信道带宽为 1THZ ,有 10 路,后级的各 AWG 的信道带宽为 10GHZ ,有 160 路。为了使后级的各 AWG 的中心波长与同其连接的前级 AWG 的信道中心波长一致,而将由前级 AWG 分成 10 波的光再由后级 AWG 以 10GHZ 的带宽进行分波。其结果通过使用后级 AWG 所具有的 160 路中的 100 路,以 10GHZ 信道间隔实现了 1000 个通道。
  在光纤通信中应用的集成光波导器件都是通过光纤进行输入、输出耦合连接。因此,随着高密度光波导器件的发展,人们也在不断的完善光纤列阵同光波导列阵的耦合和粘接技术,提高耦合效率、降低插入损耗。 为保证如此高密度集成光波中的每一条波导都有很好的均匀性,不但需要波导制备中的每一个工艺都有很完善和很好的重复性,还需要提高光纤同波导间的耦合的精确度。因此,对高密度列阵光纤同光波导间耦合机械系统的研究,如同光波导制备其它工艺一样非常重要。
列阵光纤—波导耦合问题
  光纤同光波导间的耦合随着光波导器件的发展而不断的改进。最初的光纤波导耦合是单通道波导同单根光纤的耦合,光波导同光纤的耦 合比较容易实现。随着集成光学的不断发展,光波导器件已向高密度波导列阵的方向发展,目前,集成光波导的通道数已达到几百路,并向上千路通道方向发展。
  目前,光波导器件的主要制备是采用平面制备工艺完成,光波导列阵通常位于衬底的上表面。对于高密度光波导列阵而言,波导的输入和输出端面在衬底的边沿,其波导的中心很好的排列在一条直线上。对于高密度的光波导列阵同光纤的耦合无法采用单根光纤同波导对接的方法来实现对接。人们研究发明了硅基材料制备 V-型槽的方法,用V-型槽定位光纤的方法(如图3所示),实现光纤列阵同波导的对接。由于单晶硅在{1 0 0}晶面具有很好的定向腐 蚀特性,可以通过化学腐蚀方法制备槽宽和槽深度一致的列阵V-型槽。光纤被装入V-型槽中,严格的定位在V-型槽中,光纤的中心列在一条直线上,确保同波导列阵很好的匹配对接。
  由于列阵光波导的制备工艺复杂,制备成本非常昂贵。因此,在进行列阵光纤同光波导耦合粘接之前,需要对定位好的光纤列阵进行严 格的质量检测,它同样是制备高密度集成光波导器件的关键。光纤芯距测量系统( CORE-PITCH PRO. )是用于检测列阵光纤和光波导端 面的专用设备。对于光纤列阵的测试是通过白光源输入到光纤距阵, NFP (近场图像)光学剖面测量仪观察光纤列阵每根光纤的光芯的位置。 NFP (近场图像)光学剖面测量仪,将通过监控 工序去搜寻每个光芯 的主轴中心,并在计算机上给出每根光纤对应的坐标位置。从观察到的受力点和通过激光干涉仪所经过的位置,我们的 NFP (近场图像)光学剖面测量仪能够测量精确的光纤列阵的光纤芯位置,并能精确测量纤芯的间距。
  列阵光纤很好的定位并经过严格的检测后,下一项重要的工作是将光纤列阵同波导实现端面的对接。由于光纤尺寸为微米量级,光纤列阵的长度为毫米至厘米量级。要保证波导列阵同光纤列阵很好的对准和粘接,需要高精度的光纤波导耦合调芯系统。
自动列阵光纤—波导调芯耦合系统
  为确保光纤列阵同密度光波导很好的对接,不但需要制备高质量的光波导器件和硅 V-型槽,还需要如图5所示的6维高精度的微调节架,其中有3维平移和3维转动。由于光波导和光纤的芯径为微米级,为确保它们之间高精度的对接,需要微调节架的精度应高于1个量级。
  用于光纤同光波导的微调节架最初是采用手动调节方法,因此,每个光模块的质量和制备周期会因为操作者的经验和熟练程度而差别很大,并且成品率很难保证。为了提高工作效率、确保每个光模块的质量,我们研究开发了列阵光纤波导耦合用全自动调芯系统,自动调芯系统的装置如图 5 所示。自动调芯系统采用步进电机驱动,步进电机细分每步最小移动量仅为 0.05μm 。
列阵光纤光波导耦合全自动调芯系统机理:
  1. 将光纤光波导安装到对应的位置后,光波导自动调芯耦合设备将自动调节方位。光波导夹具位置保持不变,光纤列阵首先向波导 端面接近,当光纤列阵微微接近波导时,光纤夹具下调节架的传感器将测量到受力点,并自动调节光纤列阵的方向,直到光纤列阵端面同波导端面完全平行。光纤端面同波导端面调节平行后输入端光纤开始通光进行光纤波导耦合。
  2. 由于列阵光纤的通道数太多,通常为几十 ~ 几百个通道,如果每个通道都进行耦合调节,需要的时间太长,并且由于 V 型槽已将光纤 很好的定位,因此不需要调节每根光纤进行耦合。用于列阵光纤—波导耦合用的自动调芯系统采用首尾两根光纤耦合,实现 光波导同光纤列阵的耦合。根据几何原理,首尾间隔越远耦合的精度越高。单通道光纤耦合采用以下两步来调节获得最佳耦 合,第一步是光场搜寻,首先设定光噪声基线( Noise Level ),探测光纤将在光波导输出端处采用图示的路径搜索大于光噪声基线的光信号,当搜寻到光信号后进入第二步峰值搜寻,峰值搜寻采取图示的路径在 X 、 Y 方向搜寻达到最大耦合光强,整个耦合过程由计算器控制自动完成。第一个光纤通道调节好计算机将自动存储这根光纤所在的位置。首光纤调节好后再调节尾光纤,调节步骤同上。尾光纤调节好后,自动调芯系统会自 动调节将首光纤归位到最佳耦合位置,调节耦合过程完成。全部耦合过程可以一次调节完成。
  3. 下面讨论一下光纤耦合过程中存在的列阵波导尺寸同列阵光纤尺寸的不匹配问题,以及解决方案。由于列阵光纤同光波导在制备过程中的一些不确定因素,使得其尺寸产生偏差,这时计算机将如何调节其光纤的位置。我们认为这时可根据不同光器件的要求采取三种不同的耦合方式,第一种是采取首根光纤最佳匹配位置;第二种是采用尾根光纤最佳匹配位置;第三种是取首尾光纤最佳位置的平均值。这三种不同最佳耦合方式可根据用户的用途分别采用,并在全自动列阵光纤波导调芯耦合系统的计算机中设为固定方式。通常第三种匹配方式比较常用。
  目前,高密度列阵光纤光波导自动调芯耦合系统,已经成功的应用于光波导星型耦合器、列阵波导开关和列阵波分复用器的光纤波导耦合粘接工艺,并获得非常高的耦合效率。尤其是全自动调芯系统在 AWG 光模块的研究和生产中得到了广泛的应用。
总结
  光纤通信领域的高速发展,极大的推动了光波导器件的向高密度集成化方向发展。目前,线阵高密度列阵光纤波导耦合技术已经非常完善,并能很好的满足光波导模块生产的需要。现在,光纤光波导耦合发展的新趋势——为提高光波导元件的集成度,现在人们在研究三维光波导器件,其目的是进一步增加光波导的通道数目,未来将实现面阵光波导列阵同面阵光纤的耦合。

类别: 无分类 |  评论(0) |  浏览(8755) |  收藏
2007年12月18日 13:53:13

PLC splitter 平面光波导分路器工艺流程

  随着光纤通信产业的复苏以及FTTX的发展,光分路器(Splitter)市场的春天也随之到来。目前光分路器主要有两种类型:一种是采用传统光无源器件制作技术(拉锥耦合方法)生产的熔融拉锥式光纤分路器;另一种是采用集成光学技术生产的平面光波导(PLC)分路器。PLC分路器是当今国内外研究的热点,具有很好的应用前景,然而PLC分路器的封装是制造PLC分路器中的难点。   PLC分路器内部结构。 PLC分路器的封装是指将平面波导分路器上的各个导光通路(即波导通路)与光纤阵列中的光纤一一对准,然后用特定的胶(如环氧胶)将其粘合在一起的技术。其中PLC分路器与光纤阵列的对准精确度是该项技术的关键。PLC分路器的封装涉及到光纤阵列与光波导的六维紧密对准,难度较大。当采用人工操作时,其缺点是效率低,重复性差,人为因素多且难以实现规模化的生产等。   PLC分路器实物照片。   PLC分路器的制作 PLC分路器采用半导体工艺(光刻、腐蚀、显影等技术)制作。光波导阵列位于芯片的上表面,分路功能集成在芯片上,也就是在一只芯片上实现1、1等分路;然后,在芯片两端分别耦合输入端以及输出端的多通道光纤阵列并进行封装。其内部结构和实物照片分别如图1、2所示。 与熔融拉锥式分路器相比,PLC分路器的优点有:(1)损耗对光波长不敏感,可以满足不同波长的传输需要。(2)分光均匀,可以将信号均匀分配给用户。(3)结构紧凑,体积小,可以直接安装在现有的各种交接箱内,不需留出很大的安装空间。(4)单只器件分路通道很多,可以达到32路以上。(5)多路成本低,分路数越多,成本优势越明显。 同时,PLC分路器的主要缺点有:(1)器件制作工艺复杂,技术门槛较高,目前芯片被国外几家公司垄断,国内能够大批量封装生产的企业很少。(2)相对于熔融拉锥式分路器成本较高,特别在低通道分路器方面更处于劣势。 PLC分路器封装技术 PLC分路器的封装过程包括耦合对准和粘接等操作。PLC分路器芯片与光纤阵列的耦合对准有手工和自动两种,它们依赖的硬件主要有六维精密微调架、光源、功率计、显微观测系统等,而最常用的是自动对准,它是通过光功率反馈形成闭环控制,因而对接精度和对接的耦合效率高。 PLC分路器封装主要流程如下: (1)耦合对准的准备工作:先将波导清洗干净后小心地安装到波导架上;再将光纤清洗干净,一端安装在入射端的精密调整架上,另一端接上光源(先接6.328微米的红光光源,以便初步调试通光时观察所用)。 (2)借助显微观测系统观察入射端光纤与波导的位置,并通过计算机指令手动调整光纤与波导的平行度和端面间隔。 (3)打开激光光源,根据显微系统观测到的X轴和Y轴的图像,并借助波导输出端的光斑初步判断入射端光纤与波导的耦合对准情况,以实现光纤和波导对接时良好的通光效果。 (4)当显微观测系统观察到波导输出端的光斑达到理想的效果后,移开显微观测系统。 (5)将波导输出端光纤阵列(FA)的第一和第八通道清洗干净,并用吹气球吹干。再采用步骤(2)的方法将波导输出端与光纤阵列连接并初步调整到合适的位置。然后将其连接到双通道功率计的两个探测接口上。 (6)将光纤阵列入射端6.328微米波长的光源切换为1.310/1.550微米的光源,启动光功率搜索程序自动调整波导输出端与光纤阵列的位置,使波导出射端接收到的光功率值最大,且两个采样通道的光功率值应尽量相等(即自动调整输出端光纤阵列,使其与波导入射端实现精确的对准,从而提高整体的耦合效率)。   图3. 1分支PLC分路器芯片封装结构。   (7)当波导输出端光纤阵列的光功率值达到最大且尽量相等后,再进行点胶工作。 (8)重复步骤(6),再次寻找波导输出端光纤阵列接收到的光功率最大值,以保证点胶后波导与光纤阵列的最佳耦合对准,并将其固化,再进行后续操作,完成封装。 在上面的耦合对准过程中,PLC分路器有8个通道且每个通道都要精确对准,由于波导芯片和光纤阵列(FA)的制造工艺保证了各个通道间的相对位置,所以只需把PLC分路器与FA的第一通道和第八通道同时对准,便可保证其他通道也实现了对准,这样可以减少封装的复杂程度。在上面的封装操作中最重要、技术难度最高的就是耦合对准操作,它包括初调和精确对准两个步骤。其中初调的目的是使波导能够良好的通光;精确对准的目的是完成最佳光功率耦合点的精确定位,它是靠搜索光功率最大值的程序来实现的。对接光波导需要6个自由度;3个平动(X、Y、Z)和3个转动(α、β、g),要使封装的波导器件性能良好,则对准的平动精度应控制在0.5微米以下,转动精度应高于0.05度。 1×8分支PLC分路器的封装 对1分支PLC分路器进行封装,封装的耦合对准过程采用上面介绍的封装工艺流程。对准封装后的结构如图3所示,封装的组件由PLC分路器芯片和光纤阵列组成。在PLC分路器芯片的连接部位,为了确保连接的机械强度和长期可靠性,对玻璃板整片用胶粘住。光纤阵列是用机械的方法在玻璃板上以250微米间距加工成V形沟槽,然后将光纤阵列固定在此。制作8芯光纤阵列的最高累计间隔误差平均为0.48微米,精确度极高。在PLC分路器芯片与光纤阵列的连接以及各个部件的组装过程中,为了减少组装时间,采用紫外固化粘接剂。光纤连接界面是保持长期可靠的重点,应选用耐湿、耐剥离的氟化物环氧树脂与硅烷链材料组合的粘接剂。为了减少端面的反射,采用8°研磨技术。连接和组装好光纤阵列后的PLC分路器芯片被封装在金属(铝)管壳内。1分支的组件外形尺寸约为40X4X4。
Msn:fengdou168@hotmail.com

类别: 无分类 |  评论(1) |  浏览(36557) |  收藏
«1 2 » Pages: ( 2/2 total )