日历

2024 - 3
     12
3456789
10111213141516
17181920212223
24252627282930
31      
«» 2024 - 3 «»

日志分类

存 档

日志文章


2008-06-27

浅谈平面光波导技术和应用

浅谈平面光波导技术和应用 #j #xy6  
'Ec8mfY<4  
qGW0z@C|&  
      [L7MT"AB  
  随着FTTH的蓬勃发展,PLC(Planar Lightwave Circuit,平面光路)已经成为光通信行业使用频率最高的词汇之一,而PLC的概念并不限于我们光通信人所熟知的光分路器和AWG,其材料、工艺和应用多种多样,本文略作介绍。 9a*J]5Bd%  
1.平面光波导材料 3ziyQ@R0  
  PLC光器件一般在六种材料上制作,它们是:铌酸锂(LiNbO3)、Ⅲ-Ⅴ族半导体化合物、二氧化硅(SiO2)、SOI(Silicon-on-Insulator, 绝缘体上硅)、聚合物(Polymer)和玻璃,各种材料上制作的波导结构如图1所示,其波导特性如表1所示。 miI>:Ury  
   U- \L[X{  
  图1. PLC光波导常用材料 / K-nCr  
   )rb1B|q  
  表1. PLC光波导常用材料特性 aLgt%a.  
  铌酸锂波导是通过在铌酸锂晶体上扩散Ti离子形成波导,波导结构为扩散型。InP波导以InP为称底和下包层,以InGaAsP为芯层,以InP或者InP/空气为上包层,波导结构为掩埋脊形或者脊形。二氧化硅波导以硅片为称底,以不同掺杂的SiO2材料为芯层和包层,波导结构为掩埋矩形。SOI波导是在SOI基片上制作,称底、下包层、芯层和上包层材料分别为Si、SiO2、Si和空气,波导结构为脊形。聚合物波导以硅片为称底,以不同掺杂浓度的Polymer材料为芯层,波导结构为掩埋矩形。玻璃波导是通过在玻璃材料上扩散Ag离子形成波导,波导结构为扩散型。 3\P}T#-eA  
2.平面光波导工艺 MaL$V=  
  以上六种常用的PLC光波导材料中,InP波导、二氧化硅波导、SOI波导和聚合物波导以刻蚀工艺制作,铌酸锂波导和玻璃波导以离子扩散工艺制作,下面分别以二氧化硅波导和玻璃波导为例,介绍两类波导工艺。 ?P v7p  
  二氧化硅光波导的制作工艺如图2所示,整个工艺分为七步: G[q We.%8  
  1)采用火焰水解法(FHD)或者化学气相淀积工艺(CVD),在硅片上生长一层SiO2,其中掺杂磷、硼离子,作为波导下包层,如图2(b)所示; @}L*l3  
  2)采用FHD或者CVD工艺,在下包层上再生长一层SiO2,作为波导芯层,其中掺杂锗离子,获得需要的折射率差,如图2(c)所示; qs l%Q`F  
  3)通过退火硬化工艺,使前面生长的两层SiO2变得致密均匀,如图2(d)所示。 eY;zJ  
  4)进行光刻,将需要的波导图形用光刻胶保护起来,如图2(e)所示; =)*A28L  
  5)采用反应离子刻蚀(RIE)工艺,将非波导区域刻蚀掉,如图2(f)所示; jpyC`a1n  
  6)去掉光刻胶,采用FHD或者CVD工艺,在波导芯层上再覆盖一层SiO2,其中掺杂磷、硼离子,作为波导上包层,如图2(g)所示; Dw4_M#  
  7)通过退火硬化工艺,使上包层SiO2变得致密均匀,如图2(h)所示。 J Zb.\Q=  
  二氧化硅波导工艺中的几个关键点: :A{A 7QS  
  1)材料生长和退火硬化工艺,要使每层材料的厚度和折射率均匀且准确,以达到设计的波导结构参数,尽量减少材料内部的残留应力,以降低波导的双折射效应; @4j^*sW)`  
  2)RIE刻蚀工艺,要得到陡直且光滑的波导侧壁,以降低波导的散射损耗; zl'Y;`JAp  
  3)RIE刻蚀工艺总会存在Undercut,要控制Undercut量的稳定性,作为布版设计时的补偿依据。 ^4mP0< [>  
   C/L]bAI"  
  图2. 二氧化硅光波导的制作工艺 ^[1dyYn  
  玻璃光波导的制作工艺如图3所示,整个工艺分为五步: hs>z]-p{6  
  1)在玻璃基片上溅射一层铝,作为离子交换时的掩模层,如图3(b)所示; I3S(J"]6$  
  2)进行光刻,将需要的波导图形用光刻胶保护起来,如图3(c)所示; % q,{fCk  
  3)采用化学腐蚀,将波导上部的铝膜去掉,如图3(d)所示; .D*I+v\M  
  4)将做好掩模的玻璃基片放入含Ag+-Na+离子的混合溶液中,在适当的温度下进行离子交换,如图3(e)所示,Ag+离子提升折射率,得到如图3(f)所示的沟道型光波导; .]U!H)-  
  5)对沟道型光波导施以电场,将Ag+离子驱向玻璃基片深处,得到掩埋型玻璃光波导,如图3(g)所示。 `^L \| w }  
   DyTTyru&n  
  图3. 玻璃光波导的制作工艺 *Y$Ld`=TM@  
3.平面光波导的应用 0EB&[x  
  铌酸锂晶体具有良好的电光特性,在电光调制器中应用广泛。InP材料既可以制作光有源器件又可以制作光无源器件,被视为光有源/无源器件集成的最好平台。SOI材料在MEMS器件中应用广泛,是光波导与MEMS混合集成的优良平台。聚合物波导的热光系数是SiO2的32倍,应用在需要热光调制的动态器件中,可以大大降低器件功耗。玻璃波导具有最低的传输损耗和与光纤的耦合损耗,而且成本低廉,是目前商用光分路器的主要材料。二氧化硅光波导具有良好的光学、电学、机械性能和热稳定性,被认为是无源光集成最有实用前景的技术途径。 :<|H/Qzd)  
   9rwVMyT+  
  图4. 基于铌酸锂光波导的电光调制器 Rr!B!s  
   RUT7{j  
  图5. 基于玻璃光波导的光分路器 01X^48ANR  
   6`j~)/-7  
  图6. 基于聚合物光波导的热光开关阵列 D:" & J  
   z~j& @U6v  
  图7. 基于聚合物光波导的VOA hYEt|/P._~  
   r#5(z*}(vC  
  图8. 基于二氧化硅光波导的AWG       J)ElvT  
            oaUObhy  
Aug*:}o[  
%>= S  
mN901*_  
O4jCf+xY  
      Ez!01em  
  随着FTTH的蓬勃发展,PLC(Planar Lightwave Circuit,平面光路)已经成为光通信行业使用频率最高的词汇之一,而PLC的概念并不限于我们光通信人所熟知的光分路器和AWG,其材料、工艺和应用多种多样,本文略作介绍。 gr7 & i>8  
1.平面光波导材料 C]&6@Myxy  
  PLC光器件一般在六种材料上制作,它们是:铌酸锂(LiNbO3)、Ⅲ-Ⅴ族半导体化合物、二氧化硅(SiO2)、SOI(Silicon-on-Insulator, 绝缘体上硅)、聚合物(Polymer)和玻璃,各种材料上制作的波导结构如图1所示,其波导特性如表1所示。 7AwTP  
   V I)4UG  
  图1. PLC光波导常用材料 Pu |HK#Ur  
   B}P.bbLOsA  
  表1. PLC光波导常用材料特性 w y+SGZOL  
  铌酸锂波导是通过在铌酸锂晶体上扩散Ti离子形成波导,波导结构为扩散型。InP波导以InP为称底和下包层,以InGaAsP为芯层,以InP或者InP/空气为上包层,波导结构为掩埋脊形或者脊形。二氧化硅波导以硅片为称底,以不同掺杂的SiO2材料为芯层和包层,波导结构为掩埋矩形。SOI波导是在SOI基片上制作,称底、下包层、芯层和上包层材料分别为Si、SiO2、Si和空气,波导结构为脊形。聚合物波导以硅片为称底,以不同掺杂浓度的Polymer材料为芯层,波导结构为掩埋矩形。玻璃波导是通过在玻璃材料上扩散Ag离子形成波导,波导结构为扩散型。 >>A` w<6  
2.平面光波导工艺 XLr]74=9w  
  以上六种常用的PLC光波导材料中,InP波导、二氧化硅波导、SOI波导和聚合物波导以刻蚀工艺制作,铌酸锂波导和玻璃波导以离子扩散工艺制作,下面分别以二氧化硅波导和玻璃波导为例,介绍两类波导工艺。 =%#p}LDwkI  
  二氧化硅光波导的制作工艺如图2所示,整个工艺分为七步: 8W8RYvXn_&  
  1)采用火焰水解法(FHD)或者化学气相淀积工艺(CVD),在硅片上生长一层SiO2,其中掺杂磷、硼离子,作为波导下包层,如图2(b)所示; DxD1HYL?  
  2)采用FHD或者CVD工艺,在下包层上再生长一层SiO2,作为波导芯层,其中掺杂锗离子,获得需要的折射率差,如图2(c)所示; L1y+u  
  3)通过退火硬化工艺,使前面生长的两层SiO2变得致密均匀,如图2(d)所示。 ?P%_I*gQ1  
  4)进行光刻,将需要的波导图形用光刻胶保护起来,如图2(e)所示; c|.DXs8  
  5)采用反应离子刻蚀(RIE)工艺,将非波导区域刻蚀掉,如图2(f)所示; Y r$@:!  
  6)去掉光刻胶,采用FHD或者CVD工艺,在波导芯层上再覆盖一层SiO2,其中掺杂磷、硼离子,作为波导上包层,如图2(g)所示; /Q]Z@=)}  
  7)通过退火硬化工艺,使上包层SiO2变得致密均匀,如图2(h)所示。 z1O;!s0  
  二氧化硅波导工艺中的几个关键点: :$Q,n;  
  1)材料生长和退火硬化工艺,要使每层材料的厚度和折射率均匀且准确,以达到设计的波导结构参数,尽量减少材料内部的残留应力,以降低波导的双折射效应; ilZXAn  
  2)RIE刻蚀工艺,要得到陡直且光滑的波导侧壁,以降低波导的散射损耗; !x=f N8Fq  
  3)RIE刻蚀工艺总会存在Undercut,要控制Undercut量的稳定性,作为布版设计时的补偿依据。 u`!z4Xh`r  
   4798<V l!J  
  图2. 二氧化硅光波导的制作工艺 p>3<7  
  玻璃光波导的制作工艺如图3所示,整个工艺分为五步: uh%FX*ng  
  1)在玻璃基片上溅射一层铝,作为离子交换时的掩模层,如图3(b)所示; ?rM!V:F  
  2)进行光刻,将需要的波导图形用光刻胶保护起来,如图3(c)所示; ^r%!tY0  
  3)采用化学腐蚀,将波导上部的铝膜去掉,如图3(d)所示; LMlL9BLN  
  4)将做好掩模的玻璃基片放入含Ag+-Na+离子的混合溶液中,在适当的温度下进行离子交换,如图3(e)所示,Ag+离子提升折射率,得到如图3(f)所示的沟道型光波导; UKox]jC  
  5)对沟道型光波导施以电场,将Ag+离子驱向玻璃基片深处,得到掩埋型玻璃光波导,如图3(g)所示。 )>\e[V  
   tSWc!rU]E  
  图3. 玻璃光波导的制作工艺 4{@cTfCvSq  
3.平面光波导的应用 zj~?ccu  
  铌酸锂晶体具有良好的电光特性,在电光调制器中应用广泛。InP材料既可以制作光有源器件又可以制作光无源器件,被视为光有源/无源器件集成的最好平台。SOI材料在MEMS器件中应用广泛,是光波导与MEMS混合集成的优良平台。聚合物波导的热光系数是SiO2的32倍,应用在需要热光调制的动态器件中,可以大大降低器件功耗。玻璃波导具有最低的传输损耗和与光纤的耦合损耗,而且成本低廉,是目前商用光分路器的主要材料。二氧化硅光波导具有良好的光学、电学、机械性能和热稳定性,被认为是无源光集成最有实用前景的技术途径。 `WU(4I1&  
   gh<ZgX  
  图4. 基于铌酸锂光波导的电光调制器 |( ,wJ?  
   %\w2 eW  
  图5. 基于玻璃光波导的光分路器 U.@.@gO  
   qr I},RU  
  图6. 基于聚合物光波导的热光开关阵列 F@E{iJ  
   hdz bA(fx  
  图7. 基于聚合物光波导的VOA pdMe&^  
   c Q{Ib;[  
  图8. 基于二氧化硅光波导的AWG       AF`}.m=B  
            hdn`#J9@Z  
sx ?ikhJ3  



MSN:fengdou168@hotmail.com
类别: 无分类 |  评论(2) |  浏览(29988) |  收藏
一共有 2 条评论
frank 2009-04-28 10:55 Says:
楼主图片没转过来?
sunny 2008-08-21 10:10 Says:
图片没啊?
发表评论
表情 [更多]
看不清楚,换一张